Series resistance effect on time zero dielectrics breakdown characteristics of MOSCAP with ultra-thin EOT high-k/metal gate stacks

The time zero dielectric breakdown characteristics of MOSCAP with ultra-thin EOT high-k metal gate stacks are studied. The TZDB results show an abnormal area dependence due to the series resistance effect. The series resistance components extracted from the Fowler-Nordheim tunneling relation are att...

Full description

Saved in:
Bibliographic Details
Published inJournal of semiconductors Vol. 37; no. 5; pp. 48 - 51
Main Author 徐昊 杨红 王艳蓉 王文武 万光星 任尚清 罗维春 祁路伟 赵超 陈大鹏 刘新宇 叶甜春
Format Journal Article
LanguageEnglish
Published 01.05.2016
Subjects
Online AccessGet full text
ISSN1674-4926
DOI10.1088/1674-4926/37/5/054005

Cover

More Information
Summary:The time zero dielectric breakdown characteristics of MOSCAP with ultra-thin EOT high-k metal gate stacks are studied. The TZDB results show an abnormal area dependence due to the series resistance effect. The series resistance components extracted from the Fowler-Nordheim tunneling relation are attributed to the spreading resistance due to the asymmetry electrodes. Based on a series model to eliminate the series resistance effect, an area acceleration dependence is obtained by correcting the TZDB results. The area dependence follows Poisson area scaling rules, which indicates that the mechanism of TZDB is the same as TDDB and could be considered as a trap generation process.
Bibliography:The time zero dielectric breakdown characteristics of MOSCAP with ultra-thin EOT high-k metal gate stacks are studied. The TZDB results show an abnormal area dependence due to the series resistance effect. The series resistance components extracted from the Fowler-Nordheim tunneling relation are attributed to the spreading resistance due to the asymmetry electrodes. Based on a series model to eliminate the series resistance effect, an area acceleration dependence is obtained by correcting the TZDB results. The area dependence follows Poisson area scaling rules, which indicates that the mechanism of TZDB is the same as TDDB and could be considered as a trap generation process.
11-5781/TN
high-k/metal gate stacks; ultra-thin EOT; TZDB; series resistance effect
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-4926
DOI:10.1088/1674-4926/37/5/054005