Spontaneous emission of “polarized” V-type three-level atoms strongly coupled with an optical cavity

Polarization, an intrinsic ingredient of photon, plays a critical role in its interaction with matter. A general polarization state can be an appropriate superposition of two basic polarization states, say, the vertical and horizontal linear polarized state. Here we study spontaneous emission of a V...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 24; no. 3; pp. 169 - 175
Main Author 薛艳丽 朱诗灯 李家方 丁伟 冯宝华 李志远
Format Journal Article
LanguageEnglish
Published 01.03.2015
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/24/3/034202

Cover

More Information
Summary:Polarization, an intrinsic ingredient of photon, plays a critical role in its interaction with matter. A general polarization state can be an appropriate superposition of two basic polarization states, say, the vertical and horizontal linear polarized state. Here we study spontaneous emission of a V-type three-level atom(with two upper states close in energy level)strongly coupled with a single-mode damped optical cavity. By defining a general polarization state of atom as a specific superposition of the two upper quantum states, we can prepare atoms with linear polarization at arbitrary direction, left and right circular polarization, and left and right elliptical polarization, similar to photons. We find that the spontaneous emission of light from these "polarized" three-level atoms shows very different profiles of side and axis spectra. This means that the polarization state of three-level atoms can become an active ingredient to manipulate its interaction with light and control the quantum interference effect. Exploitation of the coherent superposition and interference of quantum states in"polarized" atoms would allow one to deeply explore new frontiers of light–matter interaction.
Bibliography:Xue Yan-Li, Zhu Shi-Deng, Li Jia-Fang, Ding Wei, Feng Bao-Hua, and Li Zhi-Yuan( Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China)
Polarization, an intrinsic ingredient of photon, plays a critical role in its interaction with matter. A general polarization state can be an appropriate superposition of two basic polarization states, say, the vertical and horizontal linear polarized state. Here we study spontaneous emission of a V-type three-level atom(with two upper states close in energy level)strongly coupled with a single-mode damped optical cavity. By defining a general polarization state of atom as a specific superposition of the two upper quantum states, we can prepare atoms with linear polarization at arbitrary direction, left and right circular polarization, and left and right elliptical polarization, similar to photons. We find that the spontaneous emission of light from these "polarized" three-level atoms shows very different profiles of side and axis spectra. This means that the polarization state of three-level atoms can become an active ingredient to manipulate its interaction with light and control the quantum interference effect. Exploitation of the coherent superposition and interference of quantum states in"polarized" atoms would allow one to deeply explore new frontiers of light–matter interaction.
11-5639/O4
spontaneous emission,polarization state,three-level atoms
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/24/3/034202