7-T magnetic resonance imaging of the inner ear’s anatomy by using dual four-element radiofrequency coil arrays and the VIBE sequence
An ultra-high-field magnetic resonance (MR) scanner and a specially-optimized radiofrequency (RF) coil and sequence protocol are required to obtain high-resolution images of the inner ear that can noninvasively confirm pathologic diagnoses. In phantom studies, the MR signal distribution of the gradi...
Saved in:
Published in | Journal of the Korean Physical Society Vol. 66; no. 4; pp. 592 - 596 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Korean Physical Society
01.02.2015
한국물리학회 |
Subjects | |
Online Access | Get full text |
ISSN | 0374-4884 1976-8524 |
DOI | 10.3938/jkps.66.592 |
Cover
Summary: | An ultra-high-field magnetic resonance (MR) scanner and a specially-optimized radiofrequency (RF) coil and sequence protocol are required to obtain high-resolution images of the inner ear that can noninvasively confirm pathologic diagnoses. In phantom studies, the MR signal distribution of the gradient echo MR images generated by using a customized RF coil was compared with that of a commercial volume coil. The MR signal intensity of the customized RF coil decreases rapidly from near the RF coil plane toward the exterior of the phantom. However, the signal sensitivity of this coil is superior on both sides of the phantom, corresponding to the petrous pyramid. In
in-vivo
7-T MR imaging, a customized RF coil and a volumetric-interpolated breath-hold examination imaging sequence are employed for visualization of the inner ear’s structure. The entire membranous portion of the cochlear and the three semicircular canals, including the ductus reunions, oval window, and round window with associated nervous tissue, were clearly depicted with sufficient spatial coverage for adequate inspection of the surrounding anatomy. Developments from a new perspective to inner ear imaging using the 7-T modality could lead to further improved image sensitivity and, thus, enable ultra-structural MR imaging. |
---|---|
Bibliography: | G704-000411.2015.66.4.025 |
ISSN: | 0374-4884 1976-8524 |
DOI: | 10.3938/jkps.66.592 |