Theoretical Analysis of the Frequency Jump in E-fishbone Experiments
It is identified that barely passing electrons are the drive of the e-fishbones, rather than the barely trapped electrons at low frequency. The frequency jump in e-fishbone experiments is reproduced and analyzed. It is found that the e-fishbone frequency increases with the hot electron energy, which...
Saved in:
Published in | Chinese physics letters Vol. 33; no. 1; pp. 84 - 87 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0256-307X 1741-3540 |
DOI | 10.1088/0256-307X/33/1/015202 |
Cover
Summary: | It is identified that barely passing electrons are the drive of the e-fishbones, rather than the barely trapped electrons at low frequency. The frequency jump in e-fishbone experiments is reproduced and analyzed. It is found that the e-fishbone frequency increases with the hot electron energy, which is consistent with the experiments. The growth rate of the mode (m= 2, n = 2) is greater than that of the mode (m = 1, n = 1). |
---|---|
Bibliography: | 11-1959/O4 Yi-Fan Yan, Zhong-Tian Wang, Zhi-Xiong He, Li-Ming Yu,Zhan-Hui Wang , Jia-Qi Dong, Hui-Dong LI, Hao Feng( 1School of Sciences, Xihua University, Chengdu 610039 ;2 Southwestern Institute of Physics, Chengdu 610041) It is identified that barely passing electrons are the drive of the e-fishbones, rather than the barely trapped electrons at low frequency. The frequency jump in e-fishbone experiments is reproduced and analyzed. It is found that the e-fishbone frequency increases with the hot electron energy, which is consistent with the experiments. The growth rate of the mode (m= 2, n = 2) is greater than that of the mode (m = 1, n = 1). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0256-307X 1741-3540 |
DOI: | 10.1088/0256-307X/33/1/015202 |