Magnetic Field Measurement with Heisenberg Limit Based on Solid Spin NOON State

The maximum entangled number state (NOON state) can improve the sensitivity of physical quantity measure- ment to the Heisenberg limit 1/N. In this work, the magnetic field measurement based on the individual solid spin NOON state is investigated. Based on the tunable effective coupling coefficient,...

Full description

Saved in:
Bibliographic Details
Published inChinese physics letters Vol. 32; no. 6; pp. 164 - 168
Main Author 周雷鸣 董杨 孙方稳
Format Journal Article
LanguageEnglish
Published 01.06.2015
Subjects
Online AccessGet full text
ISSN0256-307X
1741-3540
DOI10.1088/0256-307X/32/6/067601

Cover

More Information
Summary:The maximum entangled number state (NOON state) can improve the sensitivity of physical quantity measure- ment to the Heisenberg limit 1/N. In this work, the magnetic field measurement based on the individual solid spin NOON state is investigated. Based on the tunable effective coupling coefficient, we propose a generation scheme of the three-spin NOON state, i.e, the Creenberger-Horne-Zeilinger (CHZ) state, and discussed the mea- surement resolution reduction due to decoherence. It is unnecessary to entangle spins as many as possible when decoherence exists. In practice, defect spins in diamond and alp donors with long coherence time can be applied with current techniques in the nano-scaled high resolution magnetic measurement.
Bibliography:11-1959/O4
The maximum entangled number state (NOON state) can improve the sensitivity of physical quantity measure- ment to the Heisenberg limit 1/N. In this work, the magnetic field measurement based on the individual solid spin NOON state is investigated. Based on the tunable effective coupling coefficient, we propose a generation scheme of the three-spin NOON state, i.e, the Creenberger-Horne-Zeilinger (CHZ) state, and discussed the mea- surement resolution reduction due to decoherence. It is unnecessary to entangle spins as many as possible when decoherence exists. In practice, defect spins in diamond and alp donors with long coherence time can be applied with current techniques in the nano-scaled high resolution magnetic measurement.
ZHOU Lei-Ming, DONG Yang, SUN Fang-Wen( Key Laboratory of Quantum Information, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0256-307X
1741-3540
DOI:10.1088/0256-307X/32/6/067601