Magnetic Field Measurement with Heisenberg Limit Based on Solid Spin NOON State
The maximum entangled number state (NOON state) can improve the sensitivity of physical quantity measure- ment to the Heisenberg limit 1/N. In this work, the magnetic field measurement based on the individual solid spin NOON state is investigated. Based on the tunable effective coupling coefficient,...
Saved in:
Published in | Chinese physics letters Vol. 32; no. 6; pp. 164 - 168 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.06.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0256-307X 1741-3540 |
DOI | 10.1088/0256-307X/32/6/067601 |
Cover
Summary: | The maximum entangled number state (NOON state) can improve the sensitivity of physical quantity measure- ment to the Heisenberg limit 1/N. In this work, the magnetic field measurement based on the individual solid spin NOON state is investigated. Based on the tunable effective coupling coefficient, we propose a generation scheme of the three-spin NOON state, i.e, the Creenberger-Horne-Zeilinger (CHZ) state, and discussed the mea- surement resolution reduction due to decoherence. It is unnecessary to entangle spins as many as possible when decoherence exists. In practice, defect spins in diamond and alp donors with long coherence time can be applied with current techniques in the nano-scaled high resolution magnetic measurement. |
---|---|
Bibliography: | 11-1959/O4 The maximum entangled number state (NOON state) can improve the sensitivity of physical quantity measure- ment to the Heisenberg limit 1/N. In this work, the magnetic field measurement based on the individual solid spin NOON state is investigated. Based on the tunable effective coupling coefficient, we propose a generation scheme of the three-spin NOON state, i.e, the Creenberger-Horne-Zeilinger (CHZ) state, and discussed the mea- surement resolution reduction due to decoherence. It is unnecessary to entangle spins as many as possible when decoherence exists. In practice, defect spins in diamond and alp donors with long coherence time can be applied with current techniques in the nano-scaled high resolution magnetic measurement. ZHOU Lei-Ming, DONG Yang, SUN Fang-Wen( Key Laboratory of Quantum Information, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0256-307X 1741-3540 |
DOI: | 10.1088/0256-307X/32/6/067601 |