On Landmark Distances in Polygons

We study the landmark distance function between two points in a simply connected planar polygon. We show that if the polygon vertices are used as landmarks, then the resulting landmark distance function to any given point in the polygon has a maximum principle and also does not contain local minima....

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 40; no. 5; pp. 275 - 287
Main Authors Gotsman, C., Hormann, K.
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.08.2021
Subjects
Online AccessGet full text
ISSN0167-7055
1467-8659
DOI10.1111/cgf.14373

Cover

More Information
Summary:We study the landmark distance function between two points in a simply connected planar polygon. We show that if the polygon vertices are used as landmarks, then the resulting landmark distance function to any given point in the polygon has a maximum principle and also does not contain local minima. The latter implies that a path between any two points in the polygon may be generated by steepest descent on this distance without getting “stuck” at a local minimum. Furthermore, if landmarks are increasingly added along polygon edges, the steepest descent path converges to the minimal geodesic path. Therefore, the landmark distance can be used, on the one hand in robotic navigation for routing autonomous agents along close‐to‐shortest paths and on the other for efficiently computing approximate geodesic distances between any two domain points, a property which may be useful in an extension of our work to surfaces in 3D. In the discrete setting, the steepest descent strategy becomes a greedy routing algorithm along the edges of a triangulation of the interior of the polygon, and our experiments indicate that this discrete landmark routing always delivers (i.e., does not get stuck) on “nice” triangulations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.14373