On estimation of attraction domain for port-controlled Hamiltonian systems subject to actuator saturation

This paper investigates the estimation of domain of attraction for nonlinear port controlled Hamiltonian (PCH) systems with actuator saturation (AS). Several conditions are established under which an ellipsoid is contractively invariant, and thus can be employed to find the biggest ellipsoid contain...

Full description

Saved in:
Bibliographic Details
Published inJournal of control theory and applications Vol. 10; no. 2; pp. 195 - 200
Main Authors Wei, Airong, Wang, Yuzhen
Format Journal Article
LanguageEnglish
Published Heidelberg South China University of Technology and Academy of Mathematics and Systems Science, CAS 01.05.2012
School of Control Science and Engineering, Shandong University, Jinan Shandong 250061, China
Subjects
Online AccessGet full text
ISSN1672-6340
1993-0623
DOI10.1007/s11768-012-9296-6

Cover

More Information
Summary:This paper investigates the estimation of domain of attraction for nonlinear port controlled Hamiltonian (PCH) systems with actuator saturation (AS). Several conditions are established under which an ellipsoid is contractively invariant, and thus can be employed to find the biggest ellipsoid contained in the domain of attraction. It is shown that the proposed conditions can be expressed in the form of the linear matrix inequalities (LMIs) optimization problem with constraints. Study of an illustrative example shows that the proposed method works very well in estimating the domain of attraction for some classes of nonlinear PCH systems with AS.
Bibliography:This paper investigates the estimation of domain of attraction for nonlinear port controlled Hamiltonian (PCH) systems with actuator saturation (AS). Several conditions are established under which an ellipsoid is contractively invariant, and thus can be employed to find the biggest ellipsoid contained in the domain of attraction. It is shown that the proposed conditions can be expressed in the form of the linear matrix inequalities (LMIs) optimization problem with constraints. Study of an illustrative example shows that the proposed method works very well in estimating the domain of attraction for some classes of nonlinear PCH systems with AS.
44-1600/TP
PCH system; Actuator saturation; Domain of attraction; Set invariance
Airong WEI, Yuzhen WANG School of Control Science and Engineering, Shandong University, Jinan Shandong 250061, China
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1672-6340
1993-0623
DOI:10.1007/s11768-012-9296-6