Imaging for Early Microwave Breast Cancer Quantitative Diagnosis
This letter proposes a near-field confocal microwave imaging (CMI) approach to improve the accuracy of breast cancer identification. An iterative process integrates the results of the time-delay and point spread function methods as mutual prior information, which enables precise phase and amplitude...
Saved in:
| Published in | IEEE antennas and wireless propagation letters Vol. 24; no. 9; pp. 2829 - 2833 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.09.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1536-1225 1548-5757 |
| DOI | 10.1109/LAWP.2025.3575063 |
Cover
| Summary: | This letter proposes a near-field confocal microwave imaging (CMI) approach to improve the accuracy of breast cancer identification. An iterative process integrates the results of the time-delay and point spread function methods as mutual prior information, which enables precise phase and amplitude compensation in the spherical wave model. Frequency-domain zero-padding and inverse discrete Fourier transform methods are applied to optimize imaging accuracy while maintaining efficiency. The proposed method is validated in a breast cancer detection scenario, where the structural similarity index metric is employed to evaluate reconstructed energy distribution. Results indicate a 52.59% improvement in distribution accuracy compared to traditional CMI. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1536-1225 1548-5757 |
| DOI: | 10.1109/LAWP.2025.3575063 |