Programmable Bionic Control Circuit Based on Central Pattern Generator

The central pattern generator (CPG) involves a group of neurons that produce rhythmic signals in a coordinated manner. Currently, CPG circuits capable of efficient online programming are rarely found in the literature. To address this issue, this article proposes a memristive control circuit based o...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cognitive and developmental systems Vol. 17; no. 2; pp. 233 - 246
Main Authors Hong, Qinghui, Li, Qing, Li, Jia, Sun, Jingru, Du, Sichun
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.04.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2379-8920
2379-8939
DOI10.1109/TCDS.2024.3388152

Cover

More Information
Summary:The central pattern generator (CPG) involves a group of neurons that produce rhythmic signals in a coordinated manner. Currently, CPG circuits capable of efficient online programming are rarely found in the literature. To address this issue, this article proposes a memristive control circuit based on CPG. First, an online amplification module is designed to adjust the positive and negative amplification coefficients. On the basis of this structure, a CPG unit circuit controlling a joint is proposed. According to the topology of CPG network model, a CPG network circuit composed of multiple units is devised. This network can coordinate multiple joints to produce a gait. In this article, the circuit is applied to generate the activity pattern of fish swimming. PSPICE simulation results demonstrate that four units can realize the basic swimming patterns of a robot fish. Through memristor programming, the circuit can achieve smooth online switching of robot fish swimming patterns. Moreover, hardware implementation proves the practicality of the circuit.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2379-8920
2379-8939
DOI:10.1109/TCDS.2024.3388152