PSO-Based Optimal Coverage Path Planning for Surface Defect Inspection of 3C Components With a Robotic Line Scanner
The automatic inspection of surface defects is an essential task for quality control in the computers, communications, and consumer (3C) electronics industry. Traditional inspection mechanisms (i.e., line-scan sensors) have a limited field of view (FOV), thus prompting the necessity for a multifacet...
Saved in:
| Published in | IEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 12 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9456 1557-9662 |
| DOI | 10.1109/TIM.2025.3552466 |
Cover
| Abstract | The automatic inspection of surface defects is an essential task for quality control in the computers, communications, and consumer (3C) electronics industry. Traditional inspection mechanisms (i.e., line-scan sensors) have a limited field of view (FOV), thus prompting the necessity for a multifaceted robotic inspection system capable of comprehensive scanning. Optimally selecting the robot's viewpoints and planning a path is regarded as coverage path planning (CPP), a problem that enables inspecting the object's complete surface while reducing the scanning time and avoiding misdetection of defects. In this article, we present a new approach for robotic line scanners to detect surface defects of 3C free-form objects automatically. A two-stage region segmentation method defines the local scanning based on the random sample consensus (RANSAC) and K-means clustering to improve the inspection coverage. The proposed method also consists of an adaptive region-of-interest (ROI) algorithm to define the local scanning paths. Besides, a particle swarm optimization (PSO)-based method is used for global inspection path generation to minimize the inspection time. The developed method is validated by simulation-based and experimental studies on various free-form workpieces, and its performance is compared with that of two state-of-the-art solutions. The reported results demonstrate the feasibility and effectiveness of our proposed method. |
|---|---|
| AbstractList | The automatic inspection of surface defects is an essential task for quality control in the computers, communications, and consumer (3C) electronics industry. Traditional inspection mechanisms (i.e., line-scan sensors) have a limited field of view (FOV), thus prompting the necessity for a multifaceted robotic inspection system capable of comprehensive scanning. Optimally selecting the robot's viewpoints and planning a path is regarded as coverage path planning (CPP), a problem that enables inspecting the object's complete surface while reducing the scanning time and avoiding misdetection of defects. In this article, we present a new approach for robotic line scanners to detect surface defects of 3C free-form objects automatically. A two-stage region segmentation method defines the local scanning based on the random sample consensus (RANSAC) and K-means clustering to improve the inspection coverage. The proposed method also consists of an adaptive region-of-interest (ROI) algorithm to define the local scanning paths. Besides, a particle swarm optimization (PSO)-based method is used for global inspection path generation to minimize the inspection time. The developed method is validated by simulation-based and experimental studies on various free-form workpieces, and its performance is compared with that of two state-of-the-art solutions. The reported results demonstrate the feasibility and effectiveness of our proposed method. |
| Author | Li, Junxi Lee, Hoi-Yin Liu, Yuli Muddassir, Muhammad Zheng, Pai Navarro-Alarcon, David Huo, Shengzeng Duan, Anqing Chen, Hongpeng |
| Author_xml | – sequence: 1 givenname: Hongpeng orcidid: 0000-0003-0710-9204 surname: Chen fullname: Chen, Hongpeng email: hongpeng0925.chen@connect.polyu.hk organization: Faculty of Engineering, The Hong Kong Polytechnic University (PolyU), Hong Kong, China – sequence: 2 givenname: Shengzeng orcidid: 0000-0002-7652-8958 surname: Huo fullname: Huo, Shengzeng email: kyle-sz.huo@connect.polyu.hk organization: Faculty of Engineering, The Hong Kong Polytechnic University (PolyU), Hong Kong, China – sequence: 3 givenname: Muhammad orcidid: 0000-0003-4972-1792 surname: Muddassir fullname: Muddassir, Muhammad email: mmudda@polyu.edu.hk organization: Faculty of Construction and Environment, The Hong Kong Polytechnic University (PolyU), Hong Kong, China – sequence: 4 givenname: Hoi-Yin orcidid: 0000-0003-0326-6931 surname: Lee fullname: Lee, Hoi-Yin email: hyinlee@polyu.edu.hk organization: Faculty of Engineering, The Hong Kong Polytechnic University (PolyU), Hong Kong, China – sequence: 5 givenname: Yuli orcidid: 0009-0006-0140-1211 surname: Liu fullname: Liu, Yuli email: mc45259@um.edu.mo organization: Department of Ocean Science and Technology, Faculty of Science and Technology, University of Macau, Taipa, Macau, China – sequence: 6 givenname: Junxi orcidid: 0009-0003-7242-7695 surname: Li fullname: Li, Junxi email: 21058587g@connect.polyu.hk organization: Faculty of Engineering, The Hong Kong Polytechnic University (PolyU), Hong Kong, China – sequence: 7 givenname: Anqing orcidid: 0000-0002-9666-018X surname: Duan fullname: Duan, Anqing email: anqing.duan@mbzuai.ac.ae organization: Department of Robotics, Mohamed bin Zayed University of Artificial Intelligence (MBZUAI), Abu Dhabi, United Arab Emirates – sequence: 8 givenname: Pai orcidid: 0000-0002-2329-8634 surname: Zheng fullname: Zheng, Pai email: pai.zheng@polyu.edu.hk organization: Faculty of Engineering, The Hong Kong Polytechnic University (PolyU), Hong Kong, China – sequence: 9 givenname: David orcidid: 0000-0002-3426-6638 surname: Navarro-Alarcon fullname: Navarro-Alarcon, David email: dnavar@polyu.edu.hk organization: Faculty of Engineering, The Hong Kong Polytechnic University (PolyU), Hong Kong, China |
| BookMark | eNpNkE1PAjEQhhuDiYDePXho4nmx37s9Kn6RYCCC8bjpLlNcAu3aLib-e0vg4GEyl_d5Z_IMUM95BwhdUzKilOi75eRtxAiTIy4lE0qdoT6VMs-0UqyH-oTQItNCqgs0iHFDCMmVyPsozhez7MFEWOFZ2zU7s8Vj_wPBrAHPTfeF51vjXOPW2PqAF_tgTQ34ESzUHZ642KbdeIe9xXyc0F2b3nJdxJ9Ngg1-95XvmhpPGwd4UacuCJfo3JpthKvTHqKP56fl-DWbzl4m4_tpVjORdxlUQAutKFCVC6W5MsIoArKwRElDNLeCKlZRlkauCg6EaVqxwipbMVELPkS3x942-O89xK7c-H1w6WTJaSG5yGmuU4ocU3XwMQawZRuSh_BbUlIe1JZJbXlQW57UJuTmiDQA8C-uOSVc8j_kT3T4 |
| CODEN | IEIMAO |
| Cites_doi | 10.1177/1729881416663664 10.1002/rob.22187 10.1016/j.rcim.2018.05.006 10.3390/rs8010005 10.1007/s11263-020-01358-3 10.1109/ACCESS.2021.3106062 10.3390/rs14010095 10.1002/rob.22103 10.1109/TIM.2020.3041103 10.1007/s10845-021-01803-1 10.1371/journal.pone.0232778 10.1016/j.robot.2013.09.004 10.1016/j.arcontrol.2018.10.012 10.1214/009053605000000787 10.1109/TASE.2013.2294687 10.1109/TMECH.2023.3275214 10.1016/j.rcim.2019.101843 10.3390/s18113625 10.1007/s00170-015-7830-7 10.1109/TMECH.2013.2279751 10.1109/ACCESS.2022.3144631 10.1016/j.eswa.2021.114820 10.1109/JSEN.2021.3132428 10.1109/TIM.2024.3372209 10.1145/3394486.3406482 10.3390/app11052268 10.1109/TIM.2022.3212529 10.1016/j.rcim.2017.04.009 10.1109/TIM.2023.3261933 10.1016/j.measurement.2020.107722 10.1109/ACCESS.2023.3262837 10.1007/s12541-021-00550-w 10.1016/j.jmsy.2020.05.008 10.3389/fphy.2022.892157 10.1109/TSMC.2022.3205695 10.1109/TASE.2022.3179628 10.1109/tase.2025.3528051 10.1016/j.autcon.2020.103250 10.1007/s10115-022-01776-4 10.1109/TSMCB.2009.2015956 10.1109/TMECH.2022.3142756 10.3390/s19235262 10.1016/j.eswa.2020.113535 10.1016/j.measurement.2011.02.006 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2025.3552466 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 12 |
| ExternalDocumentID | 10_1109_TIM_2025_3552466 10931035 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Research Grants Council of Hong Kong grantid: 15212721 funderid: 10.13039/501100004787 – fundername: Shanghai Microintelligence Technology Company Ltd funderid: 10.13039/501100020077 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c247t-ebe18961e16746936a4a60e58f065a093f4162b122b15d83e0291b28f6fb24c43 |
| IEDL.DBID | RIE |
| ISSN | 0018-9456 |
| IngestDate | Tue Jul 22 18:41:04 EDT 2025 Wed Oct 01 08:24:43 EDT 2025 Wed Aug 27 02:02:34 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c247t-ebe18961e16746936a4a60e58f065a093f4162b122b15d83e0291b28f6fb24c43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7652-8958 0000-0002-3426-6638 0000-0003-0326-6931 0000-0002-9666-018X 0000-0003-0710-9204 0000-0003-4972-1792 0009-0006-0140-1211 0000-0002-2329-8634 0009-0003-7242-7695 |
| PQID | 3185347179 |
| PQPubID | 85462 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_TIM_2025_3552466 ieee_primary_10931035 proquest_journals_3185347179 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref13 doi: 10.1177/1729881416663664 – ident: ref17 doi: 10.1002/rob.22187 – ident: ref24 doi: 10.1016/j.rcim.2018.05.006 – ident: ref27 doi: 10.3390/rs8010005 – ident: ref22 doi: 10.1007/s11263-020-01358-3 – ident: ref36 doi: 10.1109/ACCESS.2021.3106062 – ident: ref38 doi: 10.3390/rs14010095 – ident: ref18 doi: 10.1002/rob.22103 – ident: ref2 doi: 10.1109/TIM.2020.3041103 – ident: ref3 doi: 10.1007/s10845-021-01803-1 – ident: ref29 doi: 10.1371/journal.pone.0232778 – ident: ref14 doi: 10.1016/j.robot.2013.09.004 – ident: ref21 doi: 10.1016/j.arcontrol.2018.10.012 – ident: ref41 doi: 10.1214/009053605000000787 – ident: ref16 doi: 10.1109/TASE.2013.2294687 – ident: ref7 doi: 10.1109/TMECH.2023.3275214 – ident: ref12 doi: 10.1016/j.rcim.2019.101843 – ident: ref28 doi: 10.3390/s18113625 – ident: ref25 doi: 10.1007/s00170-015-7830-7 – ident: ref15 doi: 10.1109/TMECH.2013.2279751 – ident: ref19 doi: 10.1109/ACCESS.2022.3144631 – ident: ref39 doi: 10.1016/j.eswa.2021.114820 – ident: ref8 doi: 10.1109/JSEN.2021.3132428 – ident: ref5 doi: 10.1109/TIM.2024.3372209 – ident: ref40 doi: 10.1145/3394486.3406482 – ident: ref26 doi: 10.3390/app11052268 – ident: ref1 doi: 10.1109/TIM.2022.3212529 – ident: ref11 doi: 10.1016/j.rcim.2017.04.009 – ident: ref42 doi: 10.1109/TIM.2023.3261933 – ident: ref4 doi: 10.1016/j.measurement.2020.107722 – ident: ref33 doi: 10.1109/ACCESS.2023.3262837 – ident: ref43 doi: 10.1007/s12541-021-00550-w – ident: ref44 doi: 10.1016/j.jmsy.2020.05.008 – ident: ref23 doi: 10.3389/fphy.2022.892157 – ident: ref35 doi: 10.1109/TSMC.2022.3205695 – ident: ref6 doi: 10.1109/TASE.2022.3179628 – ident: ref10 doi: 10.1109/tase.2025.3528051 – ident: ref20 doi: 10.1016/j.autcon.2020.103250 – ident: ref32 doi: 10.1007/s10115-022-01776-4 – ident: ref37 doi: 10.1109/TSMCB.2009.2015956 – ident: ref9 doi: 10.1109/TMECH.2022.3142756 – ident: ref31 doi: 10.3390/s19235262 – ident: ref34 doi: 10.1016/j.eswa.2020.113535 – ident: ref30 doi: 10.1016/j.measurement.2011.02.006 |
| SSID | ssj0007647 |
| Score | 2.4499676 |
| Snippet | The automatic inspection of surface defects is an essential task for quality control in the computers, communications, and consumer (3C) electronics industry.... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Adaptive algorithms and consumer (3C) components Cameras Cluster analysis Clustering communications Computers coverage path planning (CPP) Field of view Free form Image segmentation Inspection line-scan sensor Particle swarm optimization Path planning Point cloud compression Quality control robotic inspection Robotics Robots Scanners Sea surface Sensors Service robots Simulation Surface defects surface inspection Three-dimensional displays Vector quantization Workpieces |
| Title | PSO-Based Optimal Coverage Path Planning for Surface Defect Inspection of 3C Components With a Robotic Line Scanner |
| URI | https://ieeexplore.ieee.org/document/10931035 https://www.proquest.com/docview/3185347179 |
| Volume | 74 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BElJ7AEqpWFgqH3rpIUtiO7ZzhAW0VOKhLghuke3YEkIkaB8Xfj1jJ6GoFVIPiXLIJI4_Z-Ybe2YM8MMGNyM1LJG5VwnXuUiKylSJkVIUVKlKxqI-F5dicst_3ef3XbJ6zIVxzsXgMzcKl3Etv2rsMkyVHYbSR1nK8lVYlUq0yVpvalcK3hbIzPAPRlrQr0mmxeHN-QV6gjQfoXGlPBZE_GOD4qYq_2jiaF7ONuGyb1gbVfI4Wi7MyL78VbPxv1u-BRsd0SRH7cj4Aiuu3obP78oPbsN6DP-0868wv55eJcdo0CpyhTrkCQXHIbYTlQ25Ro5I-r2NCHJcMl3OvLaOnLgQC0LO6zZds6lJ4wkbk6BjmjpEaJC7BxTW5HdjGmwHQc_XkSmiWbvZDtyend6MJ0m3HUNiKZeLBOHOVCEyFxIXRMGE5lqkLlceaYzGD_RI7qjJKB55pZhLaZEZqrzwhnLL2TdYq_Htu0C4qbREOeo1QzxSTQ3zqeFaWRtOA_jZA1Q-t1U3yuitpEWJYJYBzLIDcwA7ob_f3dd29QCGPaRl91_Oy5ArztAey2LvA7F9-BSe3s6yDGFtMVu6A-QdC_M9jrdXtzfR7w |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BEaI9FChFbFvABy4csk38SnKEbatd2EfFbkVvke3YUoWaoN3spb--YyeBCoTEIVEOGcXxZ8_DnvkM8MH4MCPWLEqFyyKuhIzyUpeRTlOZ0ywr00DqM5vL8RX_ci2uu2L1UAtjrQ3JZ3boH8NeflmbrV8qO_XUR0nMxGN4Ijjnoi3X-qV4U8lbiswE5zA6Bv2uZJyfriYzjAWpGKJ5pTxQIv62QuFYlb90cTAwF89h3jetzSv5Mdw2emju_mBt_O-2v4D9ztUkn9qx8RIe2eoA9h4QEB7A05AAajavYHO5XESf0aSVZIFa5BYFRz67E9UNuUQvkfSnGxH0cslyu3bKWHJmfTYImVRtwWZdkdoRNiJey9SVz9Eg329QWJFvta6xHQRjX0uWiGdl14dwdXG-Go2j7kCGyFCeNhECnmS5TKwvXZA5k4orGVuROXRkFP6gQ_eO6oTiJcqM2ZjmiaaZk05Tbjh7DTsVfv0NEK5LlaIcdYohHrGimrlYc5UZ428D-NgDVPxseTeKEK_EeYFgFh7MogNzAIe-vx-813b1AE56SItuZm4KXy3O0CKn-dE_xN7Ds_FqNi2mk_nXY9j1X2rXXE5gp1lv7Vv0Qhr9Loy9e-F71Tw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PSO-Based+Optimal+Coverage+Path+Planning+for+Surface+Defect+Inspection+of+3C+Components+With+a+Robotic+Line+Scanner&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Chen%2C+Hongpeng&rft.au=Huo%2C+Shengzeng&rft.au=Muddassir%2C+Muhammad&rft.au=Lee%2C+Hoi-Yin&rft.date=2025&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=74&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTIM.2025.3552466&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2025_3552466 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |