PSO-Based Optimal Coverage Path Planning for Surface Defect Inspection of 3C Components With a Robotic Line Scanner

The automatic inspection of surface defects is an essential task for quality control in the computers, communications, and consumer (3C) electronics industry. Traditional inspection mechanisms (i.e., line-scan sensors) have a limited field of view (FOV), thus prompting the necessity for a multifacet...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 12
Main Authors Chen, Hongpeng, Huo, Shengzeng, Muddassir, Muhammad, Lee, Hoi-Yin, Liu, Yuli, Li, Junxi, Duan, Anqing, Zheng, Pai, Navarro-Alarcon, David
Format Journal Article
LanguageEnglish
Published New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2025.3552466

Cover

Abstract The automatic inspection of surface defects is an essential task for quality control in the computers, communications, and consumer (3C) electronics industry. Traditional inspection mechanisms (i.e., line-scan sensors) have a limited field of view (FOV), thus prompting the necessity for a multifaceted robotic inspection system capable of comprehensive scanning. Optimally selecting the robot's viewpoints and planning a path is regarded as coverage path planning (CPP), a problem that enables inspecting the object's complete surface while reducing the scanning time and avoiding misdetection of defects. In this article, we present a new approach for robotic line scanners to detect surface defects of 3C free-form objects automatically. A two-stage region segmentation method defines the local scanning based on the random sample consensus (RANSAC) and K-means clustering to improve the inspection coverage. The proposed method also consists of an adaptive region-of-interest (ROI) algorithm to define the local scanning paths. Besides, a particle swarm optimization (PSO)-based method is used for global inspection path generation to minimize the inspection time. The developed method is validated by simulation-based and experimental studies on various free-form workpieces, and its performance is compared with that of two state-of-the-art solutions. The reported results demonstrate the feasibility and effectiveness of our proposed method.
AbstractList The automatic inspection of surface defects is an essential task for quality control in the computers, communications, and consumer (3C) electronics industry. Traditional inspection mechanisms (i.e., line-scan sensors) have a limited field of view (FOV), thus prompting the necessity for a multifaceted robotic inspection system capable of comprehensive scanning. Optimally selecting the robot's viewpoints and planning a path is regarded as coverage path planning (CPP), a problem that enables inspecting the object's complete surface while reducing the scanning time and avoiding misdetection of defects. In this article, we present a new approach for robotic line scanners to detect surface defects of 3C free-form objects automatically. A two-stage region segmentation method defines the local scanning based on the random sample consensus (RANSAC) and K-means clustering to improve the inspection coverage. The proposed method also consists of an adaptive region-of-interest (ROI) algorithm to define the local scanning paths. Besides, a particle swarm optimization (PSO)-based method is used for global inspection path generation to minimize the inspection time. The developed method is validated by simulation-based and experimental studies on various free-form workpieces, and its performance is compared with that of two state-of-the-art solutions. The reported results demonstrate the feasibility and effectiveness of our proposed method.
Author Li, Junxi
Lee, Hoi-Yin
Liu, Yuli
Muddassir, Muhammad
Zheng, Pai
Navarro-Alarcon, David
Huo, Shengzeng
Duan, Anqing
Chen, Hongpeng
Author_xml – sequence: 1
  givenname: Hongpeng
  orcidid: 0000-0003-0710-9204
  surname: Chen
  fullname: Chen, Hongpeng
  email: hongpeng0925.chen@connect.polyu.hk
  organization: Faculty of Engineering, The Hong Kong Polytechnic University (PolyU), Hong Kong, China
– sequence: 2
  givenname: Shengzeng
  orcidid: 0000-0002-7652-8958
  surname: Huo
  fullname: Huo, Shengzeng
  email: kyle-sz.huo@connect.polyu.hk
  organization: Faculty of Engineering, The Hong Kong Polytechnic University (PolyU), Hong Kong, China
– sequence: 3
  givenname: Muhammad
  orcidid: 0000-0003-4972-1792
  surname: Muddassir
  fullname: Muddassir, Muhammad
  email: mmudda@polyu.edu.hk
  organization: Faculty of Construction and Environment, The Hong Kong Polytechnic University (PolyU), Hong Kong, China
– sequence: 4
  givenname: Hoi-Yin
  orcidid: 0000-0003-0326-6931
  surname: Lee
  fullname: Lee, Hoi-Yin
  email: hyinlee@polyu.edu.hk
  organization: Faculty of Engineering, The Hong Kong Polytechnic University (PolyU), Hong Kong, China
– sequence: 5
  givenname: Yuli
  orcidid: 0009-0006-0140-1211
  surname: Liu
  fullname: Liu, Yuli
  email: mc45259@um.edu.mo
  organization: Department of Ocean Science and Technology, Faculty of Science and Technology, University of Macau, Taipa, Macau, China
– sequence: 6
  givenname: Junxi
  orcidid: 0009-0003-7242-7695
  surname: Li
  fullname: Li, Junxi
  email: 21058587g@connect.polyu.hk
  organization: Faculty of Engineering, The Hong Kong Polytechnic University (PolyU), Hong Kong, China
– sequence: 7
  givenname: Anqing
  orcidid: 0000-0002-9666-018X
  surname: Duan
  fullname: Duan, Anqing
  email: anqing.duan@mbzuai.ac.ae
  organization: Department of Robotics, Mohamed bin Zayed University of Artificial Intelligence (MBZUAI), Abu Dhabi, United Arab Emirates
– sequence: 8
  givenname: Pai
  orcidid: 0000-0002-2329-8634
  surname: Zheng
  fullname: Zheng, Pai
  email: pai.zheng@polyu.edu.hk
  organization: Faculty of Engineering, The Hong Kong Polytechnic University (PolyU), Hong Kong, China
– sequence: 9
  givenname: David
  orcidid: 0000-0002-3426-6638
  surname: Navarro-Alarcon
  fullname: Navarro-Alarcon, David
  email: dnavar@polyu.edu.hk
  organization: Faculty of Engineering, The Hong Kong Polytechnic University (PolyU), Hong Kong, China
BookMark eNpNkE1PAjEQhhuDiYDePXho4nmx37s9Kn6RYCCC8bjpLlNcAu3aLib-e0vg4GEyl_d5Z_IMUM95BwhdUzKilOi75eRtxAiTIy4lE0qdoT6VMs-0UqyH-oTQItNCqgs0iHFDCMmVyPsozhez7MFEWOFZ2zU7s8Vj_wPBrAHPTfeF51vjXOPW2PqAF_tgTQ34ESzUHZ642KbdeIe9xXyc0F2b3nJdxJ9Ngg1-95XvmhpPGwd4UacuCJfo3JpthKvTHqKP56fl-DWbzl4m4_tpVjORdxlUQAutKFCVC6W5MsIoArKwRElDNLeCKlZRlkauCg6EaVqxwipbMVELPkS3x942-O89xK7c-H1w6WTJaSG5yGmuU4ocU3XwMQawZRuSh_BbUlIe1JZJbXlQW57UJuTmiDQA8C-uOSVc8j_kT3T4
CODEN IEIMAO
Cites_doi 10.1177/1729881416663664
10.1002/rob.22187
10.1016/j.rcim.2018.05.006
10.3390/rs8010005
10.1007/s11263-020-01358-3
10.1109/ACCESS.2021.3106062
10.3390/rs14010095
10.1002/rob.22103
10.1109/TIM.2020.3041103
10.1007/s10845-021-01803-1
10.1371/journal.pone.0232778
10.1016/j.robot.2013.09.004
10.1016/j.arcontrol.2018.10.012
10.1214/009053605000000787
10.1109/TASE.2013.2294687
10.1109/TMECH.2023.3275214
10.1016/j.rcim.2019.101843
10.3390/s18113625
10.1007/s00170-015-7830-7
10.1109/TMECH.2013.2279751
10.1109/ACCESS.2022.3144631
10.1016/j.eswa.2021.114820
10.1109/JSEN.2021.3132428
10.1109/TIM.2024.3372209
10.1145/3394486.3406482
10.3390/app11052268
10.1109/TIM.2022.3212529
10.1016/j.rcim.2017.04.009
10.1109/TIM.2023.3261933
10.1016/j.measurement.2020.107722
10.1109/ACCESS.2023.3262837
10.1007/s12541-021-00550-w
10.1016/j.jmsy.2020.05.008
10.3389/fphy.2022.892157
10.1109/TSMC.2022.3205695
10.1109/TASE.2022.3179628
10.1109/tase.2025.3528051
10.1016/j.autcon.2020.103250
10.1007/s10115-022-01776-4
10.1109/TSMCB.2009.2015956
10.1109/TMECH.2022.3142756
10.3390/s19235262
10.1016/j.eswa.2020.113535
10.1016/j.measurement.2011.02.006
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2025.3552466
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 12
ExternalDocumentID 10_1109_TIM_2025_3552466
10931035
Genre orig-research
GrantInformation_xml – fundername: Research Grants Council of Hong Kong
  grantid: 15212721
  funderid: 10.13039/501100004787
– fundername: Shanghai Microintelligence Technology Company Ltd
  funderid: 10.13039/501100020077
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c247t-ebe18961e16746936a4a60e58f065a093f4162b122b15d83e0291b28f6fb24c43
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Tue Jul 22 18:41:04 EDT 2025
Wed Oct 01 08:24:43 EDT 2025
Wed Aug 27 02:02:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-ebe18961e16746936a4a60e58f065a093f4162b122b15d83e0291b28f6fb24c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7652-8958
0000-0002-3426-6638
0000-0003-0326-6931
0000-0002-9666-018X
0000-0003-0710-9204
0000-0003-4972-1792
0009-0006-0140-1211
0000-0002-2329-8634
0009-0003-7242-7695
PQID 3185347179
PQPubID 85462
PageCount 12
ParticipantIDs crossref_primary_10_1109_TIM_2025_3552466
ieee_primary_10931035
proquest_journals_3185347179
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref13
  doi: 10.1177/1729881416663664
– ident: ref17
  doi: 10.1002/rob.22187
– ident: ref24
  doi: 10.1016/j.rcim.2018.05.006
– ident: ref27
  doi: 10.3390/rs8010005
– ident: ref22
  doi: 10.1007/s11263-020-01358-3
– ident: ref36
  doi: 10.1109/ACCESS.2021.3106062
– ident: ref38
  doi: 10.3390/rs14010095
– ident: ref18
  doi: 10.1002/rob.22103
– ident: ref2
  doi: 10.1109/TIM.2020.3041103
– ident: ref3
  doi: 10.1007/s10845-021-01803-1
– ident: ref29
  doi: 10.1371/journal.pone.0232778
– ident: ref14
  doi: 10.1016/j.robot.2013.09.004
– ident: ref21
  doi: 10.1016/j.arcontrol.2018.10.012
– ident: ref41
  doi: 10.1214/009053605000000787
– ident: ref16
  doi: 10.1109/TASE.2013.2294687
– ident: ref7
  doi: 10.1109/TMECH.2023.3275214
– ident: ref12
  doi: 10.1016/j.rcim.2019.101843
– ident: ref28
  doi: 10.3390/s18113625
– ident: ref25
  doi: 10.1007/s00170-015-7830-7
– ident: ref15
  doi: 10.1109/TMECH.2013.2279751
– ident: ref19
  doi: 10.1109/ACCESS.2022.3144631
– ident: ref39
  doi: 10.1016/j.eswa.2021.114820
– ident: ref8
  doi: 10.1109/JSEN.2021.3132428
– ident: ref5
  doi: 10.1109/TIM.2024.3372209
– ident: ref40
  doi: 10.1145/3394486.3406482
– ident: ref26
  doi: 10.3390/app11052268
– ident: ref1
  doi: 10.1109/TIM.2022.3212529
– ident: ref11
  doi: 10.1016/j.rcim.2017.04.009
– ident: ref42
  doi: 10.1109/TIM.2023.3261933
– ident: ref4
  doi: 10.1016/j.measurement.2020.107722
– ident: ref33
  doi: 10.1109/ACCESS.2023.3262837
– ident: ref43
  doi: 10.1007/s12541-021-00550-w
– ident: ref44
  doi: 10.1016/j.jmsy.2020.05.008
– ident: ref23
  doi: 10.3389/fphy.2022.892157
– ident: ref35
  doi: 10.1109/TSMC.2022.3205695
– ident: ref6
  doi: 10.1109/TASE.2022.3179628
– ident: ref10
  doi: 10.1109/tase.2025.3528051
– ident: ref20
  doi: 10.1016/j.autcon.2020.103250
– ident: ref32
  doi: 10.1007/s10115-022-01776-4
– ident: ref37
  doi: 10.1109/TSMCB.2009.2015956
– ident: ref9
  doi: 10.1109/TMECH.2022.3142756
– ident: ref31
  doi: 10.3390/s19235262
– ident: ref34
  doi: 10.1016/j.eswa.2020.113535
– ident: ref30
  doi: 10.1016/j.measurement.2011.02.006
SSID ssj0007647
Score 2.4499676
Snippet The automatic inspection of surface defects is an essential task for quality control in the computers, communications, and consumer (3C) electronics industry....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Adaptive algorithms
and consumer (3C) components
Cameras
Cluster analysis
Clustering
communications
Computers
coverage path planning (CPP)
Field of view
Free form
Image segmentation
Inspection
line-scan sensor
Particle swarm optimization
Path planning
Point cloud compression
Quality control
robotic inspection
Robotics
Robots
Scanners
Sea surface
Sensors
Service robots
Simulation
Surface defects
surface inspection
Three-dimensional displays
Vector quantization
Workpieces
Title PSO-Based Optimal Coverage Path Planning for Surface Defect Inspection of 3C Components With a Robotic Line Scanner
URI https://ieeexplore.ieee.org/document/10931035
https://www.proquest.com/docview/3185347179
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BElJ7AEqpWFgqH3rpIUtiO7ZzhAW0VOKhLghuke3YEkIkaB8Xfj1jJ6GoFVIPiXLIJI4_Z-Ybe2YM8MMGNyM1LJG5VwnXuUiKylSJkVIUVKlKxqI-F5dicst_3ef3XbJ6zIVxzsXgMzcKl3Etv2rsMkyVHYbSR1nK8lVYlUq0yVpvalcK3hbIzPAPRlrQr0mmxeHN-QV6gjQfoXGlPBZE_GOD4qYq_2jiaF7ONuGyb1gbVfI4Wi7MyL78VbPxv1u-BRsd0SRH7cj4Aiuu3obP78oPbsN6DP-0868wv55eJcdo0CpyhTrkCQXHIbYTlQ25Ro5I-r2NCHJcMl3OvLaOnLgQC0LO6zZds6lJ4wkbk6BjmjpEaJC7BxTW5HdjGmwHQc_XkSmiWbvZDtyend6MJ0m3HUNiKZeLBOHOVCEyFxIXRMGE5lqkLlceaYzGD_RI7qjJKB55pZhLaZEZqrzwhnLL2TdYq_Htu0C4qbREOeo1QzxSTQ3zqeFaWRtOA_jZA1Q-t1U3yuitpEWJYJYBzLIDcwA7ob_f3dd29QCGPaRl91_Oy5ArztAey2LvA7F9-BSe3s6yDGFtMVu6A-QdC_M9jrdXtzfR7w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BEaI9FChFbFvABy4csk38SnKEbatd2EfFbkVvke3YUoWaoN3spb--YyeBCoTEIVEOGcXxZ8_DnvkM8MH4MCPWLEqFyyKuhIzyUpeRTlOZ0ywr00DqM5vL8RX_ci2uu2L1UAtjrQ3JZ3boH8NeflmbrV8qO_XUR0nMxGN4Ijjnoi3X-qV4U8lbiswE5zA6Bv2uZJyfriYzjAWpGKJ5pTxQIv62QuFYlb90cTAwF89h3jetzSv5Mdw2emju_mBt_O-2v4D9ztUkn9qx8RIe2eoA9h4QEB7A05AAajavYHO5XESf0aSVZIFa5BYFRz67E9UNuUQvkfSnGxH0cslyu3bKWHJmfTYImVRtwWZdkdoRNiJey9SVz9Eg329QWJFvta6xHQRjX0uWiGdl14dwdXG-Go2j7kCGyFCeNhECnmS5TKwvXZA5k4orGVuROXRkFP6gQ_eO6oTiJcqM2ZjmiaaZk05Tbjh7DTsVfv0NEK5LlaIcdYohHrGimrlYc5UZ428D-NgDVPxseTeKEK_EeYFgFh7MogNzAIe-vx-813b1AE56SItuZm4KXy3O0CKn-dE_xN7Ds_FqNi2mk_nXY9j1X2rXXE5gp1lv7Vv0Qhr9Loy9e-F71Tw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PSO-Based+Optimal+Coverage+Path+Planning+for+Surface+Defect+Inspection+of+3C+Components+With+a+Robotic+Line+Scanner&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Chen%2C+Hongpeng&rft.au=Huo%2C+Shengzeng&rft.au=Muddassir%2C+Muhammad&rft.au=Lee%2C+Hoi-Yin&rft.date=2025&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=74&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTIM.2025.3552466&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2025_3552466
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon