Robust Nonlinear Optimal Control via System Level Synthesis

This article addresses the problem of finite horizon constrained robust optimal control for nonlinear systems subject to norm-bounded disturbances. To this end, the underlying uncertain nonlinear system is decomposed based on a first-order Taylor series expansion into a nominal system and an error (...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 70; no. 7; pp. 4780 - 4787
Main Authors Leeman, Antoine P., Kohler, Johannes, Zanelli, Andrea, Bennani, Samir, Zeilinger, Melanie N.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9286
1558-2523
DOI10.1109/TAC.2025.3552482

Cover

More Information
Summary:This article addresses the problem of finite horizon constrained robust optimal control for nonlinear systems subject to norm-bounded disturbances. To this end, the underlying uncertain nonlinear system is decomposed based on a first-order Taylor series expansion into a nominal system and an error (deviation) described as an uncertain linear time-varying system. This decomposition allows us to leverage system level synthesis to jointly optimize an affine error feedback, a nominal nonlinear trajectory, and, most importantly, a dynamic linearization error overbound used to ensure robust constraint satisfaction for the nonlinear system. The proposed approach thereby results in less conservative planning compared with state-of-the-art techniques. We demonstrate the benefits of the proposed approach to control the rotational motion of a rigid body subject to state and input constraints.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2025.3552482