Few‐shot learning for highly accelerated 3D time‐of‐flight MRA reconstruction

To develop a deep learning-based reconstruction method for highly accelerated 3D time-of-flight MRA (TOF-MRA) that achieves high-quality reconstruction with robust generalization using extremely limited acquired raw data, addressing the challenge of time-consuming acquisition of high-resolution, who...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine
Main Authors Li, Hao, Chiew, Mark, Dragonu, Iulius, Jezzard, Peter, Okell, Thomas W.
Format Journal Article
LanguageEnglish
Published United States 10.09.2025
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.70072

Cover

More Information
Summary:To develop a deep learning-based reconstruction method for highly accelerated 3D time-of-flight MRA (TOF-MRA) that achieves high-quality reconstruction with robust generalization using extremely limited acquired raw data, addressing the challenge of time-consuming acquisition of high-resolution, whole-head angiograms. A novel few-shot learning-based reconstruction framework is proposed, featuring a 3D variational network specifically designed for 3D TOF-MRA that is pre-trained on simulated complex-valued, multi-coil raw k-space datasets synthesized from diverse open-source magnitude images and fine-tuned using only two single-slab experimentally acquired datasets. The proposed approach was evaluated against existing methods on acquired retrospectively undersampled in vivo k-space data from five healthy volunteers and on prospectively undersampled data from two additional subjects. The proposed method achieved superior reconstruction performance on experimentally acquired in vivo data over comparison methods, preserving most fine vessels with minimal artifacts with up to eight-fold acceleration. Compared to other simulation techniques, the proposed method generated more realistic raw k-space data for 3D TOF-MRA. Consistently high-quality reconstructions were also observed on prospectively undersampled data. By leveraging few-shot learning, the proposed method enabled highly accelerated 3D TOF-MRA relying on minimal experimentally acquired data, achieving promising results on both retrospective and prospective in vivo data while outperforming existing methods. Given the challenges of acquiring and sharing large raw k-space datasets, this holds significant promise for advancing research and clinical applications in high-resolution, whole-head 3D TOF-MRA imaging.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0740-3194
1522-2594
1522-2594
DOI:10.1002/mrm.70072