A Fast Algorithm for Onboard Atmospheric Powered Descent Guidance

Atmospheric powered descent guidance (APDG) can be solved by successive convexification; however, its onboard application is impeded by high computational cost. When aerodynamic forces are ignored, powered descent guidance (PDG) can be converted to a single convex problem. In contrast, APDG has to b...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on aerospace and electronic systems Vol. 59; no. 5; pp. 1 - 14
Main Authors Chen, Yushu, Yang, Guangwen, Wang, Lu, Chen, Haipeng, Gan, Qingzhong, Xu, Quanyong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9251
1557-9603
DOI10.1109/TAES.2023.3271961

Cover

More Information
Summary:Atmospheric powered descent guidance (APDG) can be solved by successive convexification; however, its onboard application is impeded by high computational cost. When aerodynamic forces are ignored, powered descent guidance (PDG) can be converted to a single convex problem. In contrast, APDG has to be converted into a sequence of convex subproblems, each of which is significantly more complicated. Consequently, the computation increases sharply. A fast real-time interior point method was presented to solve the correlated convex subproblems efficiently onboard in the work. The main contributions are as follows: Firstly, an algorithm was proposed to accelerate the solution of linear systems that cost most of the computation in each iterative step by exploiting the specific problem structure. Secondly, a warm-starting scheme was introduced to refine the initial value of a subproblem with a rough approximate solution of the former subproblem, which lessened the iterative steps required for each subproblem. The method proposed reduced the run time by a factor of 9 compared with the fastest publicly available solver tested in Monte Carlo simulations to evaluate the efficiency of solvers. Runtimes on the order of 0.6 s are achieved on a radiation-hardened flight processor, which demonstrated the potential of the real-time onboard application.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2023.3271961