An Efficient and General Automated Power Amplifier Design Method Based on Surrogate Model Assisted Hybrid Optimization Technique

In layout-level optimization-oriented power amplifier (PA) design, the need for a good quality initial design and the high computational cost of electromagnetic (EM) simulations are remaining challenges. To address these challenges, a new method called efficient and general Bayesian neural network (...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on microwave theory and techniques Vol. 73; no. 2; pp. 926 - 937
Main Authors Liu, Bo, Xue, Liyuan, Fan, Haijun, Ding, Yuan, Imran, Muhammad, Wu, Tao
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9480
1557-9670
DOI10.1109/TMTT.2024.3518913

Cover

Abstract In layout-level optimization-oriented power amplifier (PA) design, the need for a good quality initial design and the high computational cost of electromagnetic (EM) simulations are remaining challenges. To address these challenges, a new method called efficient and general Bayesian neural network (BNN)-assisted hybrid optimization algorithm for PA design (E-GASPAD), is proposed. The key innovations of E-GASPAD include the introduction of BNN to model the PA design landscape and a new hybrid optimization algorithm co-working with BNN prediction for efficient PA design optimization. The performance of E-GASPAD is demonstrated by a 27-31 GHz class-AB PA and a 24-31 GHz wideband Doherty PA. Considering around 30 design variables with wide search ranges, the complete set of PA performance specifications, and full-wave EM simulations, layout-level high-performance designs are obtained automatically within a few hundred simulations (i.e., less than 72 h).
AbstractList In layout-level optimization-oriented power amplifier (PA) design, the need for a good quality initial design and the high computational cost of electromagnetic (EM) simulations are remaining challenges. To address these challenges, a new method called efficient and general Bayesian neural network (BNN)-assisted hybrid optimization algorithm for PA design (E-GASPAD), is proposed. The key innovations of E-GASPAD include the introduction of BNN to model the PA design landscape and a new hybrid optimization algorithm co-working with BNN prediction for efficient PA design optimization. The performance of E-GASPAD is demonstrated by a 27–31 GHz class-AB PA and a 24–31 GHz wideband Doherty PA. Considering around 30 design variables with wide search ranges, the complete set of PA performance specifications, and full-wave EM simulations, layout-level high-performance designs are obtained automatically within a few hundred simulations (i.e., less than 72 h).
Author Wu, Tao
Liu, Bo
Ding, Yuan
Imran, Muhammad
Xue, Liyuan
Fan, Haijun
Author_xml – sequence: 1
  givenname: Bo
  orcidid: 0000-0002-3093-4571
  surname: Liu
  fullname: Liu, Bo
  email: bo.liu@glasgow.ac.uk
  organization: James Watt School of Engineering, University of Glasgow, Glasgow, U.K
– sequence: 2
  givenname: Liyuan
  orcidid: 0000-0001-5849-9391
  surname: Xue
  fullname: Xue, Liyuan
  email: l.xue.1@research.gla.ac.uk
  organization: James Watt School of Engineering, University of Glasgow, Glasgow, U.K
– sequence: 3
  givenname: Haijun
  orcidid: 0000-0002-5513-1978
  surname: Fan
  fullname: Fan, Haijun
  email: h.fan@hw.ac.uk
  organization: School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, U.K
– sequence: 4
  givenname: Yuan
  surname: Ding
  fullname: Ding, Yuan
  email: y.ding@hw.ac.uk
  organization: School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, U.K
– sequence: 5
  givenname: Muhammad
  surname: Imran
  fullname: Imran, Muhammad
  email: muhammad.imran@glasgow.ac.uk
  organization: James Watt School of Engineering, University of Glasgow, Glasgow, U.K
– sequence: 6
  givenname: Tao
  surname: Wu
  fullname: Wu, Tao
  email: t.wu.1@research.gla.ac.uk
  organization: James Watt School of Engineering, University of Glasgow, Glasgow, U.K
BookMark eNpNkE1LAzEQhoMoWD9-gOAh4HlrstnNJsdV6we0VHA9L7vJxKa0SU22SD35002pB08zwzzvDDxn6Nh5BwhdUTKmlMjbZtY045zkxZiVVEjKjtCIlmWVSV6RYzQihIpMFoKcorMYl2ksSiJG6Kd2eGKMVRbcgDun8RM4CN0K19vBr7sBNH71XxBwvd6srLGpe4BoPxyewbDwGt91MTHe4bdtCP4jJfDMa0gHYrRxn3_e9cFqPN8Mdm2_u8EmuAG1cPZzCxfoxHSrCJd_9Ry9P06a--dsOn96ua-nmcoLPmQsl5WSjPdGQgmaqdRppiuqlGFG6b4SnSw5F30p-rQtWA9p7LUyPREc2Dm6OdzdBJ_exqFd-m1w6WXLKC8KzgtZJYoeKBV8jAFMuwl23YVdS0m7F93uRbd70e2f6JS5PmQsAPzjBZXJMvsF0E1-DQ
CODEN IETMAB
Cites_doi 10.1109/ACCESS.2022.3201348
10.1016/j.egyai.2020.100039
10.1109/MWSYM.2019.8700757
10.1109/TMTT.2021.3061547
10.1023/A:1008202821328
10.1016/j.cma.2021.114079
10.1080/00401706.1987.10488205
10.1023/A:1008306431147
10.1109/TCSII.2022.3173608
10.1109/TMTT.1982.1131411
10.1109/TCSI.2020.3008947
10.1080/01621459.2017.1285773
10.1109/LMWC.2021.3063868
10.1109/TEVC.2005.859463
10.1109/TMTT.2022.3225316
10.1007/s12293-018-0262-9
10.1109/LMWC.2022.3160227
10.1109/SMACD58065.2023.10192155
10.1109/TCAD.2013.2284109
10.1109/TMTT.2015.2495360
10.1109/SMACD58065.2023.10192226
10.1016/j.swevo.2011.05.001
10.1109/TEVC.2013.2248012
10.1016/0893-6080(91)90009-T
10.1109/TMTT.2022.3176818
10.1109/TMTT.2023.3284258
10.1109/LMWC.2021.3083101
10.1109/TMTT.2016.2636146
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TMTT.2024.3518913
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9670
EndPage 937
ExternalDocumentID 10_1109_TMTT_2024_3518913
10819014
Genre orig-research
GroupedDBID -~X
.GJ
0R~
29I
3EH
4.4
5GY
5VS
66.
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
VOH
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c246t-3297c936bf9e5ed3c6bfd3d71ccf3fcdb78a95668b58b3c643be566bdcfb086e3
IEDL.DBID RIE
ISSN 0018-9480
IngestDate Mon Jun 30 10:14:12 EDT 2025
Wed Oct 01 02:41:53 EDT 2025
Wed Aug 27 01:52:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/Crown.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-3297c936bf9e5ed3c6bfd3d71ccf3fcdb78a95668b58b3c643be566bdcfb086e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5513-1978
0000-0002-3093-4571
0000-0001-5849-9391
PQID 3164466497
PQPubID 106035
PageCount 12
ParticipantIDs ieee_primary_10819014
crossref_primary_10_1109_TMTT_2024_3518913
proquest_journals_3164466497
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on microwave theory and techniques
PublicationTitleAbbrev TMTT
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref14
Kingma (ref27) 2014
ref31
ref30
ref11
ref33
ref10
ref32
ref2
Jain (ref25) 1988; 6
ref16
ref19
ref18
Cripps (ref1) 2006; 250
Dennis (ref17) 1997
Molga (ref35) 2005; 101
ref24
ref23
ref20
ref21
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Blundell (ref22)
Kennedy (ref36) 2010
Hart (ref26) 2004
References_xml – ident: ref11
  doi: 10.1109/ACCESS.2022.3201348
– ident: ref23
  doi: 10.1016/j.egyai.2020.100039
– ident: ref29
  doi: 10.1109/MWSYM.2019.8700757
– ident: ref5
  doi: 10.1109/TMTT.2021.3061547
– ident: ref18
  doi: 10.1023/A:1008202821328
– ident: ref21
  doi: 10.1016/j.cma.2021.114079
– ident: ref24
  doi: 10.1080/00401706.1987.10488205
– ident: ref16
  doi: 10.1023/A:1008306431147
– start-page: 760
  volume-title: Encyclopedia of Machine Learning
  year: 2010
  ident: ref36
  article-title: Particle swarm optimization
– volume-title: Recent Advances in Memetic Algorithms
  year: 2004
  ident: ref26
– ident: ref6
  doi: 10.1109/TCSII.2022.3173608
– ident: ref2
  doi: 10.1109/TMTT.1982.1131411
– ident: ref8
  doi: 10.1109/TCSI.2020.3008947
– ident: ref20
  doi: 10.1080/01621459.2017.1285773
– year: 2014
  ident: ref27
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– start-page: 330
  volume-title: Multidisciplinary Design Optimization: State-of-the-Art
  year: 1997
  ident: ref17
  article-title: Managing approximation models in optimization
– ident: ref30
  doi: 10.1109/LMWC.2021.3063868
– ident: ref15
  doi: 10.1109/TEVC.2005.859463
– volume: 101
  start-page: 48
  year: 2005
  ident: ref35
  article-title: Test functions for optimization needs
  publication-title: Test Functions Optim. Needs
– ident: ref33
  doi: 10.1109/TMTT.2022.3225316
– ident: ref7
  doi: 10.1007/s12293-018-0262-9
– ident: ref31
  doi: 10.1109/LMWC.2022.3160227
– ident: ref28
  doi: 10.1109/SMACD58065.2023.10192155
– ident: ref12
  doi: 10.1109/TCAD.2013.2284109
– ident: ref4
  doi: 10.1109/TMTT.2015.2495360
– ident: ref9
  doi: 10.1109/SMACD58065.2023.10192226
– volume: 6
  volume-title: Algorithms for Clustering Data
  year: 1988
  ident: ref25
– ident: ref13
  doi: 10.1016/j.swevo.2011.05.001
– ident: ref14
  doi: 10.1109/TEVC.2013.2248012
– ident: ref19
  doi: 10.1016/0893-6080(91)90009-T
– volume: 250
  volume-title: RF Power Amplifiers for Wireless Communications
  year: 2006
  ident: ref1
– start-page: 1613
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref22
  article-title: Weight uncertainty in neural network
– ident: ref32
  doi: 10.1109/TMTT.2022.3176818
– ident: ref34
  doi: 10.1109/TMTT.2023.3284258
– ident: ref3
  doi: 10.1109/LMWC.2021.3083101
– ident: ref10
  doi: 10.1109/TMTT.2016.2636146
SSID ssj0014508
Score 2.4959989
Snippet In layout-level optimization-oriented power amplifier (PA) design, the need for a good quality initial design and the high computational cost of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 926
SubjectTerms Algorithms
Amplifier design
Bayes methods
Bayesian neural network (BNN)
Computational modeling
Computer simulation
Data models
Design optimization
Doherty power amplifier (PA)
evolutionary algorithm
Layouts
Machine learning
Neural networks
Optimization
Power amplifiers
Prediction algorithms
Predictive models
Semiconductor device modeling
surrogate modeling
Topology
Uncertainty
wideband
Title An Efficient and General Automated Power Amplifier Design Method Based on Surrogate Model Assisted Hybrid Optimization Technique
URI https://ieeexplore.ieee.org/document/10819014
https://www.proquest.com/docview/3164466497
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9670
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014508
  issn: 0018-9480
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZYTvRAoaVi26WaQ09I2SaxE9vH0LJaIS0gNUjcovh1QSRoSQ701J_esZMg2gqpl8iR48jyeDye1zeEfGGxSWJnbWQTfDDmkkhITSNap4nz-CMu9wnOm8t8fcMubrPbMVk95MJYa0PwmV36ZvDlm1b33lSGHB7kF5uRGRf5kKz17DJgWTweu8jBTEwuzCSWX8tNWaIqmLIlzRLvl_tDCIWqKv8cxUG-rN6Sy2lmQ1jJ3bLv1FL__Au08b-nfkD2x5smFMPWOCQ7tnlH3rzAH3xPfhUNnAcMCRwMdWNgRKGGou9avMtaA9e-jBoUPvDcoQiF7yHkAzah8jScoRA00Dbwo99uW2-SA19dDX-AvOYtqbB-8jlhcIVH0_2Y8wnlBBx7RG5W5-W3dTSWZIh0yvIuoqnkWtJcOWkza6jGlqGGJ1o76rRRXNSoceVCZUJhL6PK4qsy2ilUniz9QHabtrHHBFDv41LwOktrwYRRKlM5S7jQQkkd63ROTicaVQ8D8kYVNJZYVp6glSdoNRJ0To78mr_4cFjuOVlMZK1G5nysKKqIHlVf8o-vDPtE9lJf5zdEZy_Ibrft7QlePjr1OWy632Rj1-Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOQCH8ipiS4E5cELKksR2Yh8XaLVAd0EilXqL4telIkFLcoBTf3rHToIKCIlL5MhxZHk8Hs_rG4CXPLVZ6p1LXEYPzn2WSGVYwpo88wF_xBchwXmzLdZn_MO5OJ-S1WMujHMuBp-5ZWhGX77tzBBMZcThUX7xm3BLcM7FmK71y2nARTodvMTDXM5OzCxVr6tNVZEymPMlE1nwzP0mhmJdlb8O4yhhTu7Bdp7bGFhysRx6vTQ__4Bt_O_J34f96a6Jq3FzPIAbrn0Id68hED6Cy1WLxxFFggZj01qccKhxNfQd3Wadxc-hkBquQui5JyGK72LQB25i7Wl8Q2LQYtfil2G364JRDkN9NfoBcVuwpeL6R8gKw090OH2dsj6xmqFjD-Ds5Lh6u06mogyJyXnRJyxXpVGs0F454Swz1LLMlpkxnnljdSkb0rkKqYXU1MuZdvSqrfGa1CfHHsNe27XuCSBpfqWSZSPyRnJptRa64FkpjdTKpCZfwKuZRvW3EXujjjpLqupA0DoQtJ4IuoCDsObXPhyXewFHM1nriT2_14yUxICrr8rDfwx7AbfX1ea0Pn2__fgU7uSh6m-M1T6CvX43uGd0Fen187gBrwDZTtsx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+and+General+Automated+Power+Amplifier+Design+Method+Based+on+Surrogate+Model+Assisted+Hybrid+Optimization+Technique&rft.jtitle=IEEE+transactions+on+microwave+theory+and+techniques&rft.au=Liu%2C+Bo&rft.au=Xue%2C+Liyuan&rft.au=Fan%2C+Haijun&rft.au=Ding%2C+Yuan&rft.date=2025-02-01&rft.pub=IEEE&rft.issn=0018-9480&rft.volume=73&rft.issue=2&rft.spage=926&rft.epage=937&rft_id=info:doi/10.1109%2FTMTT.2024.3518913&rft.externalDocID=10819014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9480&client=summon