An Efficient and General Automated Power Amplifier Design Method Based on Surrogate Model Assisted Hybrid Optimization Technique
In layout-level optimization-oriented power amplifier (PA) design, the need for a good quality initial design and the high computational cost of electromagnetic (EM) simulations are remaining challenges. To address these challenges, a new method called efficient and general Bayesian neural network (...
Saved in:
| Published in | IEEE transactions on microwave theory and techniques Vol. 73; no. 2; pp. 926 - 937 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9480 1557-9670 |
| DOI | 10.1109/TMTT.2024.3518913 |
Cover
| Abstract | In layout-level optimization-oriented power amplifier (PA) design, the need for a good quality initial design and the high computational cost of electromagnetic (EM) simulations are remaining challenges. To address these challenges, a new method called efficient and general Bayesian neural network (BNN)-assisted hybrid optimization algorithm for PA design (E-GASPAD), is proposed. The key innovations of E-GASPAD include the introduction of BNN to model the PA design landscape and a new hybrid optimization algorithm co-working with BNN prediction for efficient PA design optimization. The performance of E-GASPAD is demonstrated by a 27-31 GHz class-AB PA and a 24-31 GHz wideband Doherty PA. Considering around 30 design variables with wide search ranges, the complete set of PA performance specifications, and full-wave EM simulations, layout-level high-performance designs are obtained automatically within a few hundred simulations (i.e., less than 72 h). |
|---|---|
| AbstractList | In layout-level optimization-oriented power amplifier (PA) design, the need for a good quality initial design and the high computational cost of electromagnetic (EM) simulations are remaining challenges. To address these challenges, a new method called efficient and general Bayesian neural network (BNN)-assisted hybrid optimization algorithm for PA design (E-GASPAD), is proposed. The key innovations of E-GASPAD include the introduction of BNN to model the PA design landscape and a new hybrid optimization algorithm co-working with BNN prediction for efficient PA design optimization. The performance of E-GASPAD is demonstrated by a 27–31 GHz class-AB PA and a 24–31 GHz wideband Doherty PA. Considering around 30 design variables with wide search ranges, the complete set of PA performance specifications, and full-wave EM simulations, layout-level high-performance designs are obtained automatically within a few hundred simulations (i.e., less than 72 h). |
| Author | Wu, Tao Liu, Bo Ding, Yuan Imran, Muhammad Xue, Liyuan Fan, Haijun |
| Author_xml | – sequence: 1 givenname: Bo orcidid: 0000-0002-3093-4571 surname: Liu fullname: Liu, Bo email: bo.liu@glasgow.ac.uk organization: James Watt School of Engineering, University of Glasgow, Glasgow, U.K – sequence: 2 givenname: Liyuan orcidid: 0000-0001-5849-9391 surname: Xue fullname: Xue, Liyuan email: l.xue.1@research.gla.ac.uk organization: James Watt School of Engineering, University of Glasgow, Glasgow, U.K – sequence: 3 givenname: Haijun orcidid: 0000-0002-5513-1978 surname: Fan fullname: Fan, Haijun email: h.fan@hw.ac.uk organization: School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, U.K – sequence: 4 givenname: Yuan surname: Ding fullname: Ding, Yuan email: y.ding@hw.ac.uk organization: School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, U.K – sequence: 5 givenname: Muhammad surname: Imran fullname: Imran, Muhammad email: muhammad.imran@glasgow.ac.uk organization: James Watt School of Engineering, University of Glasgow, Glasgow, U.K – sequence: 6 givenname: Tao surname: Wu fullname: Wu, Tao email: t.wu.1@research.gla.ac.uk organization: James Watt School of Engineering, University of Glasgow, Glasgow, U.K |
| BookMark | eNpNkE1LAzEQhoMoWD9-gOAh4HlrstnNJsdV6we0VHA9L7vJxKa0SU22SD35002pB08zwzzvDDxn6Nh5BwhdUTKmlMjbZtY045zkxZiVVEjKjtCIlmWVSV6RYzQihIpMFoKcorMYl2ksSiJG6Kd2eGKMVRbcgDun8RM4CN0K19vBr7sBNH71XxBwvd6srLGpe4BoPxyewbDwGt91MTHe4bdtCP4jJfDMa0gHYrRxn3_e9cFqPN8Mdm2_u8EmuAG1cPZzCxfoxHSrCJd_9Ry9P06a--dsOn96ua-nmcoLPmQsl5WSjPdGQgmaqdRppiuqlGFG6b4SnSw5F30p-rQtWA9p7LUyPREc2Dm6OdzdBJ_exqFd-m1w6WXLKC8KzgtZJYoeKBV8jAFMuwl23YVdS0m7F93uRbd70e2f6JS5PmQsAPzjBZXJMvsF0E1-DQ |
| CODEN | IETMAB |
| Cites_doi | 10.1109/ACCESS.2022.3201348 10.1016/j.egyai.2020.100039 10.1109/MWSYM.2019.8700757 10.1109/TMTT.2021.3061547 10.1023/A:1008202821328 10.1016/j.cma.2021.114079 10.1080/00401706.1987.10488205 10.1023/A:1008306431147 10.1109/TCSII.2022.3173608 10.1109/TMTT.1982.1131411 10.1109/TCSI.2020.3008947 10.1080/01621459.2017.1285773 10.1109/LMWC.2021.3063868 10.1109/TEVC.2005.859463 10.1109/TMTT.2022.3225316 10.1007/s12293-018-0262-9 10.1109/LMWC.2022.3160227 10.1109/SMACD58065.2023.10192155 10.1109/TCAD.2013.2284109 10.1109/TMTT.2015.2495360 10.1109/SMACD58065.2023.10192226 10.1016/j.swevo.2011.05.001 10.1109/TEVC.2013.2248012 10.1016/0893-6080(91)90009-T 10.1109/TMTT.2022.3176818 10.1109/TMTT.2023.3284258 10.1109/LMWC.2021.3083101 10.1109/TMTT.2016.2636146 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TMTT.2024.3518913 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1557-9670 |
| EndPage | 937 |
| ExternalDocumentID | 10_1109_TMTT_2024_3518913 10819014 |
| Genre | orig-research |
| GroupedDBID | -~X .GJ 0R~ 29I 3EH 4.4 5GY 5VS 66. 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TAF TN5 VH1 VJK VOH AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c246t-3297c936bf9e5ed3c6bfd3d71ccf3fcdb78a95668b58b3c643be566bdcfb086e3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9480 |
| IngestDate | Mon Jun 30 10:14:12 EDT 2025 Wed Oct 01 02:41:53 EDT 2025 Wed Aug 27 01:52:55 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/Crown.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c246t-3297c936bf9e5ed3c6bfd3d71ccf3fcdb78a95668b58b3c643be566bdcfb086e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5513-1978 0000-0002-3093-4571 0000-0001-5849-9391 |
| PQID | 3164466497 |
| PQPubID | 106035 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_10819014 crossref_primary_10_1109_TMTT_2024_3518913 proquest_journals_3164466497 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on microwave theory and techniques |
| PublicationTitleAbbrev | TMTT |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref34 ref15 ref14 Kingma (ref27) 2014 ref31 ref30 ref11 ref33 ref10 ref32 ref2 Jain (ref25) 1988; 6 ref16 ref19 ref18 Cripps (ref1) 2006; 250 Dennis (ref17) 1997 Molga (ref35) 2005; 101 ref24 ref23 ref20 ref21 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Blundell (ref22) Kennedy (ref36) 2010 Hart (ref26) 2004 |
| References_xml | – ident: ref11 doi: 10.1109/ACCESS.2022.3201348 – ident: ref23 doi: 10.1016/j.egyai.2020.100039 – ident: ref29 doi: 10.1109/MWSYM.2019.8700757 – ident: ref5 doi: 10.1109/TMTT.2021.3061547 – ident: ref18 doi: 10.1023/A:1008202821328 – ident: ref21 doi: 10.1016/j.cma.2021.114079 – ident: ref24 doi: 10.1080/00401706.1987.10488205 – ident: ref16 doi: 10.1023/A:1008306431147 – start-page: 760 volume-title: Encyclopedia of Machine Learning year: 2010 ident: ref36 article-title: Particle swarm optimization – volume-title: Recent Advances in Memetic Algorithms year: 2004 ident: ref26 – ident: ref6 doi: 10.1109/TCSII.2022.3173608 – ident: ref2 doi: 10.1109/TMTT.1982.1131411 – ident: ref8 doi: 10.1109/TCSI.2020.3008947 – ident: ref20 doi: 10.1080/01621459.2017.1285773 – year: 2014 ident: ref27 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – start-page: 330 volume-title: Multidisciplinary Design Optimization: State-of-the-Art year: 1997 ident: ref17 article-title: Managing approximation models in optimization – ident: ref30 doi: 10.1109/LMWC.2021.3063868 – ident: ref15 doi: 10.1109/TEVC.2005.859463 – volume: 101 start-page: 48 year: 2005 ident: ref35 article-title: Test functions for optimization needs publication-title: Test Functions Optim. Needs – ident: ref33 doi: 10.1109/TMTT.2022.3225316 – ident: ref7 doi: 10.1007/s12293-018-0262-9 – ident: ref31 doi: 10.1109/LMWC.2022.3160227 – ident: ref28 doi: 10.1109/SMACD58065.2023.10192155 – ident: ref12 doi: 10.1109/TCAD.2013.2284109 – ident: ref4 doi: 10.1109/TMTT.2015.2495360 – ident: ref9 doi: 10.1109/SMACD58065.2023.10192226 – volume: 6 volume-title: Algorithms for Clustering Data year: 1988 ident: ref25 – ident: ref13 doi: 10.1016/j.swevo.2011.05.001 – ident: ref14 doi: 10.1109/TEVC.2013.2248012 – ident: ref19 doi: 10.1016/0893-6080(91)90009-T – volume: 250 volume-title: RF Power Amplifiers for Wireless Communications year: 2006 ident: ref1 – start-page: 1613 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref22 article-title: Weight uncertainty in neural network – ident: ref32 doi: 10.1109/TMTT.2022.3176818 – ident: ref34 doi: 10.1109/TMTT.2023.3284258 – ident: ref3 doi: 10.1109/LMWC.2021.3083101 – ident: ref10 doi: 10.1109/TMTT.2016.2636146 |
| SSID | ssj0014508 |
| Score | 2.4959989 |
| Snippet | In layout-level optimization-oriented power amplifier (PA) design, the need for a good quality initial design and the high computational cost of... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 926 |
| SubjectTerms | Algorithms Amplifier design Bayes methods Bayesian neural network (BNN) Computational modeling Computer simulation Data models Design optimization Doherty power amplifier (PA) evolutionary algorithm Layouts Machine learning Neural networks Optimization Power amplifiers Prediction algorithms Predictive models Semiconductor device modeling surrogate modeling Topology Uncertainty wideband |
| Title | An Efficient and General Automated Power Amplifier Design Method Based on Surrogate Model Assisted Hybrid Optimization Technique |
| URI | https://ieeexplore.ieee.org/document/10819014 https://www.proquest.com/docview/3164466497 |
| Volume | 73 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9670 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014508 issn: 0018-9480 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZYTvRAoaVi26WaQ09I2SaxE9vH0LJaIS0gNUjcovh1QSRoSQ701J_esZMg2gqpl8iR48jyeDye1zeEfGGxSWJnbWQTfDDmkkhITSNap4nz-CMu9wnOm8t8fcMubrPbMVk95MJYa0PwmV36ZvDlm1b33lSGHB7kF5uRGRf5kKz17DJgWTweu8jBTEwuzCSWX8tNWaIqmLIlzRLvl_tDCIWqKv8cxUG-rN6Sy2lmQ1jJ3bLv1FL__Au08b-nfkD2x5smFMPWOCQ7tnlH3rzAH3xPfhUNnAcMCRwMdWNgRKGGou9avMtaA9e-jBoUPvDcoQiF7yHkAzah8jScoRA00Dbwo99uW2-SA19dDX-AvOYtqbB-8jlhcIVH0_2Y8wnlBBx7RG5W5-W3dTSWZIh0yvIuoqnkWtJcOWkza6jGlqGGJ1o76rRRXNSoceVCZUJhL6PK4qsy2ilUniz9QHabtrHHBFDv41LwOktrwYRRKlM5S7jQQkkd63ROTicaVQ8D8kYVNJZYVp6glSdoNRJ0To78mr_4cFjuOVlMZK1G5nysKKqIHlVf8o-vDPtE9lJf5zdEZy_Ibrft7QlePjr1OWy632Rj1-Q |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOQCH8ipiS4E5cELKksR2Yh8XaLVAd0EilXqL4telIkFLcoBTf3rHToIKCIlL5MhxZHk8Hs_rG4CXPLVZ6p1LXEYPzn2WSGVYwpo88wF_xBchwXmzLdZn_MO5OJ-S1WMujHMuBp-5ZWhGX77tzBBMZcThUX7xm3BLcM7FmK71y2nARTodvMTDXM5OzCxVr6tNVZEymPMlE1nwzP0mhmJdlb8O4yhhTu7Bdp7bGFhysRx6vTQ__4Bt_O_J34f96a6Jq3FzPIAbrn0Id68hED6Cy1WLxxFFggZj01qccKhxNfQd3Wadxc-hkBquQui5JyGK72LQB25i7Wl8Q2LQYtfil2G364JRDkN9NfoBcVuwpeL6R8gKw090OH2dsj6xmqFjD-Ds5Lh6u06mogyJyXnRJyxXpVGs0F454Swz1LLMlpkxnnljdSkb0rkKqYXU1MuZdvSqrfGa1CfHHsNe27XuCSBpfqWSZSPyRnJptRa64FkpjdTKpCZfwKuZRvW3EXujjjpLqupA0DoQtJ4IuoCDsObXPhyXewFHM1nriT2_14yUxICrr8rDfwx7AbfX1ea0Pn2__fgU7uSh6m-M1T6CvX43uGd0Fen187gBrwDZTtsx |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+and+General+Automated+Power+Amplifier+Design+Method+Based+on+Surrogate+Model+Assisted+Hybrid+Optimization+Technique&rft.jtitle=IEEE+transactions+on+microwave+theory+and+techniques&rft.au=Liu%2C+Bo&rft.au=Xue%2C+Liyuan&rft.au=Fan%2C+Haijun&rft.au=Ding%2C+Yuan&rft.date=2025-02-01&rft.pub=IEEE&rft.issn=0018-9480&rft.volume=73&rft.issue=2&rft.spage=926&rft.epage=937&rft_id=info:doi/10.1109%2FTMTT.2024.3518913&rft.externalDocID=10819014 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9480&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9480&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9480&client=summon |