An Efficient and General Automated Power Amplifier Design Method Based on Surrogate Model Assisted Hybrid Optimization Technique

In layout-level optimization-oriented power amplifier (PA) design, the need for a good quality initial design and the high computational cost of electromagnetic (EM) simulations are remaining challenges. To address these challenges, a new method called efficient and general Bayesian neural network (...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on microwave theory and techniques Vol. 73; no. 2; pp. 926 - 937
Main Authors Liu, Bo, Xue, Liyuan, Fan, Haijun, Ding, Yuan, Imran, Muhammad, Wu, Tao
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9480
1557-9670
DOI10.1109/TMTT.2024.3518913

Cover

More Information
Summary:In layout-level optimization-oriented power amplifier (PA) design, the need for a good quality initial design and the high computational cost of electromagnetic (EM) simulations are remaining challenges. To address these challenges, a new method called efficient and general Bayesian neural network (BNN)-assisted hybrid optimization algorithm for PA design (E-GASPAD), is proposed. The key innovations of E-GASPAD include the introduction of BNN to model the PA design landscape and a new hybrid optimization algorithm co-working with BNN prediction for efficient PA design optimization. The performance of E-GASPAD is demonstrated by a 27-31 GHz class-AB PA and a 24-31 GHz wideband Doherty PA. Considering around 30 design variables with wide search ranges, the complete set of PA performance specifications, and full-wave EM simulations, layout-level high-performance designs are obtained automatically within a few hundred simulations (i.e., less than 72 h).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2024.3518913