Safety-Critical Randomized Event-Triggered Learning of Gaussian Process With Applications to Data-Driven Predictive Control
Safety and data efficiency are important concerns in data-driven control, especially for nonlinear systems with unknown dynamics and subject to disturbances. In this work, we consider a class of control-affine nonlinear systems with partially unknown dynamics and aim to introduce an event-triggered...
Saved in:
| Published in | IEEE transactions on automatic control Vol. 70; no. 6; pp. 3920 - 3935 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9286 1558-2523 |
| DOI | 10.1109/TAC.2024.3523682 |
Cover
| Abstract | Safety and data efficiency are important concerns in data-driven control, especially for nonlinear systems with unknown dynamics and subject to disturbances. In this work, we consider a class of control-affine nonlinear systems with partially unknown dynamics and aim to introduce an event-triggered learning-based control approach with guaranteed safety and improved data utilization efficiency. Specifically, a randomized learning approach is employed to evaluate the safety of state trajectories by defining and estimating its confidence interval, with data from a multisample of randomly generated state trajectories. Using the proposed randomized learning algorithm, a nominal trajectory with a high probability safety guarantee is designed, thus ensuring the disturbed system states to remain within a prespecified range around the nominal trajectory with a sufficiently high probability. Through removing irrelevant data, a local prediction model around the nominal trajectory is learned with satisfactory precision, and is updated online using an event-triggered learning strategy. Based on the learned model, an efficient data-driven predictive controller is designed to force the system states to evolve within the vicinity of the designed safety nominal trajectory. The effectiveness of the proposed event-triggered learning and data-driven control approaches is validated through comprehensive simulation studies. |
|---|---|
| AbstractList | Safety and data efficiency are important concerns in data-driven control, especially for nonlinear systems with unknown dynamics and subject to disturbances. In this work, we consider a class of control-affine nonlinear systems with partially unknown dynamics and aim to introduce an event-triggered learning-based control approach with guaranteed safety and improved data utilization efficiency. Specifically, a randomized learning approach is employed to evaluate the safety of state trajectories by defining and estimating its confidence interval, with data from a multisample of randomly generated state trajectories. Using the proposed randomized learning algorithm, a nominal trajectory with a high probability safety guarantee is designed, thus ensuring the disturbed system states to remain within a prespecified range around the nominal trajectory with a sufficiently high probability. Through removing irrelevant data, a local prediction model around the nominal trajectory is learned with satisfactory precision, and is updated online using an event-triggered learning strategy. Based on the learned model, an efficient data-driven predictive controller is designed to force the system states to evolve within the vicinity of the designed safety nominal trajectory. The effectiveness of the proposed event-triggered learning and data-driven control approaches is validated through comprehensive simulation studies. |
| Author | Zheng, Kaikai Shi, Yang Shi, Dawei |
| Author_xml | – sequence: 1 givenname: Kaikai orcidid: 0000-0001-9826-6293 surname: Zheng fullname: Zheng, Kaikai email: kaikai.zheng@bit.edu.cn organization: MIIT Key Laboratory of Servo Motion System Drive and Control, School of Automation, Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Dawei orcidid: 0000-0002-3480-7502 surname: Shi fullname: Shi, Dawei email: daweishi@bit.edu.cn organization: MIIT Key Laboratory of Servo Motion System Drive and Control, School of Automation, Beijing Institute of Technology, Beijing, China – sequence: 3 givenname: Yang orcidid: 0000-0003-1337-5322 surname: Shi fullname: Shi, Yang email: yshi@uvic.ca organization: Department of Mechanical Engineering, Faculty of Engineering, University of Victoria, Victoria, BC, Canada |
| BookMark | eNpNkE1LAzEQhoNUsFbvHjwEPG_N53b3WNZPKCha8bhks5Oa0iY1SQX1z5vSHjzNvPDMO_CcooHzDhC6oGRMKamv59NmzAgTYy4ZLyt2hIZUyqpgOQ7QkBBaFTWryhN0GuMyx1IIOkS_r8pA-i6aYJPVaoVflOv92v5Aj2-_wKViHuxiASHnGajgrFtgb_C92sZolcPPwWuIEb_b9IGnm80qtyTrXcTJ4xuVVHETbC7KIPRWp7zjxrsU_OoMHRu1inB-mCP0dnc7bx6K2dP9YzOdFZoJmYpSmonoaQ0dGOCdMJUsa1N1lNb9RGnTUei4IVJxVupeqrITWhBeaqMFM9DzEbra926C_9xCTO3Sb4PLL1vOKK85qRnPFNlTOvgYA5h2E-xahe-WknanuM2K253i9qA4n1zuTywA_MMrOpFC8D-JjXvd |
| CODEN | IETAA9 |
| Cites_doi | 10.3182/20070822-3-za-2920.00076 10.1109/TAC.2020.3030877 10.1016/j.automatica.2013.01.002 10.1109/CDC.2018.8619572 10.1017/9781009232487 10.1016/j.automatica.2021.110114 10.1016/j.arcontrol.2021.09.005 10.23919/ACC50511.2021.9483029 10.1146/annurev-control-090419-075625 10.1016/j.arcontrol.2012.09.004 10.1109/TCYB.2018.2868715 10.1109/TAC.2022.3202088 10.1109/TAC.2020.2969713 10.1109/CDC51059.2022.9992739 10.1109/TAC.2021.3059156 10.1109/MCS.2023.3310305 10.1109/JOE.2018.2797558 10.1007/978-1-4471-4610-0 10.1109/TAC.2022.3191760 10.1609/aaai.v35i8.16912 10.1016/j.sysconle.2012.11.004 10.1109/LCSYS.2023.3285785 10.7551/mitpress/7503.003.0006 10.1016/j.arcontrol.2009.07.001 10.1109/LCSYS.2022.3183530 10.1109/CDC51059.2022.9992772 10.1007/978-3-319-21021-6 10.23919/ACC.2018.8431892 10.1109/TRO.2022.3154715 10.1109/TAC.2019.2958840 10.1007/s10515-022-00337-x 10.1109/TIT.2011.2182033 10.1109/TVT.2018.2804891 10.1109/TAC.2022.3148374 10.1109/TAC.2009.2031207 10.1016/j.ifacol.2023.10.1190 10.1016/j.ins.2012.07.014 10.1016/j.automatica.2016.09.032 10.1109/LCSYS.2023.3341346 10.1016/j.jprocont.2014.01.012 10.15607/RSS.2019.XV.054 10.1109/TNNLS.2014.2319052 10.1109/TAC.2020.2966717 10.1109/TCYB.2018.2837874 10.1109/TAC.2019.2959924 10.1115/DSCC2014-6048 10.23919/ACC.2017.7962984 10.1109/TAC.2021.3131988 10.1109/LRA.2023.3309130 10.1016/j.sysconle.2011.05.013 10.1109/TAC.2021.3049335 10.23919/ACC.2019.8814333 10.1016/j.automatica.2021.109597 10.23919/ACC53348.2022.9867378 10.1109/TAC.2018.2876389 10.1016/j.ins.2012.01.047 10.1016/j.ins.2016.07.051 10.1007/s11837-019-03555-z 10.1016/j.automatica.2020.109009 10.1109/LCSYS.2020.3006725 10.1109/TNN.2011.2176141 10.1016/j.automatica.2019.01.023 10.1109/TAC.2005.851439 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TAC.2024.3523682 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Explore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2523 |
| EndPage | 3935 |
| ExternalDocumentID | 10_1109_TAC_2024_3523682 10817544 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China; National Science Foundation of China grantid: 62261160575; 62333001 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c245t-65f74d19ebefe3b4f8569f8b119d7acfb1eb3f05a326cd5a6b4c4036cfc42fed3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9286 |
| IngestDate | Sun Oct 19 00:06:08 EDT 2025 Wed Oct 01 05:56:35 EDT 2025 Wed Aug 27 01:49:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c245t-65f74d19ebefe3b4f8569f8b119d7acfb1eb3f05a326cd5a6b4c4036cfc42fed3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9826-6293 0000-0003-1337-5322 0000-0002-3480-7502 |
| PQID | 3213930923 |
| PQPubID | 85475 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_3213930923 ieee_primary_10817544 crossref_primary_10_1109_TAC_2024_3523682 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on automatic control |
| PublicationTitleAbbrev | TAC |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref56 ref15 ref14 ref58 ref53 ref52 ref11 ref55 Capone (ref17) 2022; 162 ref54 Girard (ref42) 2004 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 Rawlings (ref67) 2017 ref44 ref43 Taylor (ref10) 2020 ref49 ref8 ref7 Matousek (ref59) 2013 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref36 Lederer (ref37) 2019; 32 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref71 ref70 ref72 Capone (ref12) 2022 ref24 ref68 ref23 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 Umlauft (ref73) 2020; 120 Girard (ref41) 2002; 15 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref26 doi: 10.3182/20070822-3-za-2920.00076 – ident: ref52 doi: 10.1109/TAC.2020.3030877 – volume: 32 year: 2019 ident: ref37 article-title: Uniform error bounds for Gaussian process regression with application to safe control publication-title: in Proc. 33rd Int. Conf. Neural Inf. Process. Syst. – ident: ref21 doi: 10.1016/j.automatica.2013.01.002 – ident: ref44 doi: 10.1109/CDC.2018.8619572 – ident: ref66 doi: 10.1017/9781009232487 – ident: ref39 doi: 10.1016/j.automatica.2021.110114 – start-page: 2609 volume-title: Proc. Int. Conf. Mach. Learn. year: 2022 ident: ref12 article-title: Gaussian process uniform error bounds with unknown hyperparameters for safety-critical applications – ident: ref3 doi: 10.1016/j.arcontrol.2021.09.005 – ident: ref32 doi: 10.23919/ACC50511.2021.9483029 – ident: ref11 doi: 10.1146/annurev-control-090419-075625 – ident: ref6 doi: 10.1016/j.arcontrol.2012.09.004 – ident: ref23 doi: 10.1109/TCYB.2018.2868715 – volume: 15 start-page: 529 year: 2002 ident: ref41 article-title: Multiple-step ahead prediction for non linear dynamic systemsA Gaussian process treatment with propagation of the uncertainty publication-title: Adv. Neural Inf. Process. Syst. – volume-title: Lectures on Discrete Geometry year: 2013 ident: ref59 – ident: ref71 doi: 10.1109/TAC.2022.3202088 – ident: ref27 doi: 10.1109/TAC.2020.2969713 – ident: ref19 doi: 10.1109/CDC51059.2022.9992739 – ident: ref72 doi: 10.1109/TAC.2021.3059156 – ident: ref36 doi: 10.1109/MCS.2023.3310305 – ident: ref4 doi: 10.1109/JOE.2018.2797558 – ident: ref53 doi: 10.1007/978-1-4471-4610-0 – ident: ref47 doi: 10.1109/TAC.2022.3191760 – ident: ref38 doi: 10.1609/aaai.v35i8.16912 – ident: ref69 doi: 10.1016/j.sysconle.2012.11.004 – year: 2004 ident: ref42 article-title: Approximate methods for propagation of uncertainty with Gaussian process models, – ident: ref28 doi: 10.1109/LCSYS.2023.3285785 – ident: ref14 doi: 10.7551/mitpress/7503.003.0006 – ident: ref20 doi: 10.1016/j.arcontrol.2009.07.001 – ident: ref49 doi: 10.1109/LCSYS.2022.3183530 – ident: ref63 doi: 10.1109/CDC51059.2022.9992772 – ident: ref54 doi: 10.1007/978-3-319-21021-6 – volume: 162 start-page: 2609 volume-title: Proc. 39th Int. Conf. Mach. Learn. year: 2022 ident: ref17 article-title: Gaussian process uniform error bounds with unknown hyperparameters for safety-critical applications – ident: ref64 doi: 10.23919/ACC.2018.8431892 – ident: ref45 doi: 10.1109/TRO.2022.3154715 – ident: ref48 doi: 10.1109/TAC.2019.2958840 – ident: ref57 doi: 10.1007/s10515-022-00337-x – ident: ref70 doi: 10.1109/TIT.2011.2182033 – ident: ref31 doi: 10.1109/TVT.2018.2804891 – volume-title: Model Predictive Control: Theory, Computation, and Design year: 2017 ident: ref67 – ident: ref56 doi: 10.1109/TAC.2022.3148374 – ident: ref58 doi: 10.1109/TAC.2009.2031207 – ident: ref40 doi: 10.1016/j.ifacol.2023.10.1190 – ident: ref1 doi: 10.1016/j.ins.2012.07.014 – ident: ref2 doi: 10.1016/j.automatica.2016.09.032 – ident: ref33 doi: 10.1109/LCSYS.2023.3341346 – ident: ref7 doi: 10.1016/j.jprocont.2014.01.012 – ident: ref18 doi: 10.15607/RSS.2019.XV.054 – ident: ref46 doi: 10.1109/TNNLS.2014.2319052 – ident: ref35 doi: 10.1109/TAC.2020.2966717 – ident: ref30 doi: 10.1109/CDC.2018.8619572 – ident: ref9 doi: 10.1109/TCYB.2018.2837874 – ident: ref34 doi: 10.1109/TAC.2019.2959924 – ident: ref60 doi: 10.1115/DSCC2014-6048 – ident: ref22 doi: 10.23919/ACC.2017.7962984 – ident: ref65 doi: 10.1109/TAC.2021.3131988 – ident: ref29 doi: 10.1109/LRA.2023.3309130 – ident: ref68 doi: 10.1016/j.sysconle.2011.05.013 – ident: ref62 doi: 10.1109/TAC.2021.3049335 – ident: ref50 doi: 10.23919/ACC.2019.8814333 – ident: ref61 doi: 10.1016/j.automatica.2021.109597 – ident: ref5 doi: 10.23919/ACC53348.2022.9867378 – volume: 120 volume-title: Proc. 2nd Conf. Learn. Dyn. Control year: 2020 ident: ref73 article-title: Smart forgetting for safe online learning with Gaussian processes – ident: ref24 doi: 10.1109/TAC.2018.2876389 – start-page: 708 volume-title: Proc. Learn. Dyn. Control year: 2020 ident: ref10 article-title: Learning for safety-critical control with control barrier functions – ident: ref8 doi: 10.1016/j.ins.2012.01.047 – ident: ref16 doi: 10.1016/j.ins.2016.07.051 – ident: ref43 doi: 10.1007/s11837-019-03555-z – ident: ref51 doi: 10.1016/j.automatica.2020.109009 – ident: ref13 doi: 10.1109/LCSYS.2020.3006725 – ident: ref15 doi: 10.1109/TNN.2011.2176141 – ident: ref55 doi: 10.1016/j.automatica.2019.01.023 – ident: ref25 doi: 10.1109/TAC.2005.851439 |
| SSID | ssj0016441 |
| Score | 2.4872825 |
| Snippet | Safety and data efficiency are important concerns in data-driven control, especially for nonlinear systems with unknown dynamics and subject to disturbances.... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 3920 |
| SubjectTerms | Accuracy Adaptation models Algorithms Computational modeling Confidence intervals Control systems Data models Data-driven control Dynamical systems Event detection event-triggered learning Gaussian process Machine learning Nonlinear control Nonlinear systems Prediction models Predictive control Predictive models randomized learning Safety Safety critical safety-critical system Simulation Statistical analysis Training Trajectory Uncertainty |
| Title | Safety-Critical Randomized Event-Triggered Learning of Gaussian Process With Applications to Data-Driven Predictive Control |
| URI | https://ieeexplore.ieee.org/document/10817544 https://www.proquest.com/docview/3213930923 |
| Volume | 70 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2523 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016441 issn: 0018-9286 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwy8EYWCPLAwuCSO48ZjVV5CggGKYIv8OkCIBpV0AP485yRFBYTElsGRLH--l---O0L2AVSqE-VYoo1kQkLMlIt6zABkaICM5T5why8u5dmNOL9L7xqyesWF8d5XxWe-Gz6rXL4r7CQ8laGEZ3Fo2DZP5nuZrMlaXymDYNhrtYsSzLOvnGSkDof9AUaCXHTR20hkxr_ZoGqoyi9NXJmXk2VyOd1YXVXy1J2Upmvff_Rs_PfOV8hS42jSfn0zVsmcH62RxZn2g-vk41qDL9_YdNwBvdIjVzw_vntHj0MdJBti7H4fpnnSpg_rPS2AnurJa-Be0oZlQG8fywfan0mF07KgR7rU7GgctCkuDPmgoFnpoK6N3yA3J8fDwRlrhjEwy0VaMplCT7hYIejgEyMgS6WCzMSxcj1twcQYlkOEwHNpXaqlEVagebRgBQfvkk3SGhUjv0VoqjODbop0godFQgmwGKZKsJEAn5o2OZjCk7_UPTfyKlaJVI5Q5gHKvIGyTTbCac-sqw-6TTpTQPNGKl_zhKO_m0To027_8dsOWeBhwG_1zNIhrXI88bvodZRmr7ptnzli1qQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOUAP5dWKpQV84MLBS-LY3vi42rYs0O4BtqK3yK8pFWJTtdkD7Z_vOMlWCwiJS5TDWLL8eV6eF8BbRKNsYQIvrNNcasy5CdmIO8SSFJDzIqba4eOZnp7IT6fqtC9Wb2thYoxt8lkcpt82lh9qv0xPZcThZZ4att2HB_SVqivXugsaJNXeCV7iYVHeRSUz834-npAvKOSQ7I1Cl-I3LdSOVflLFrcK5vAxzFZb6_JKfgyXjRv66z-6Nv733p_AVm9qsnF3N57Cvbh4BptrDQifw81Xi7H5xVcDD9gXuwj1z_PrGNhByoTkc_Lez9I8T9Z3Yj1jNbIPdnmVqi9ZX2fAvp0339l4LRjOmprt28by_cskT4kwRYSSbGWTLjt-G04OD-aTKe_HMXAvpGq4VjiSITcEO8bCSSyVNli6PDdhZD26nBxzzAh6oX1QVjvpJSlIj14KjKHYgY1FvYgvgClbOjJUdJAiEUkj0ZOjqtFnEqNyA3i3gqe66LpuVK23kpmKoKwSlFUP5QC202mv0XUHPYC9FaBVz5dXVSHI4i0ysmpf_mPZG3g4nR8fVUcfZ5934ZFI437bR5c92Ggul_EV2SCNe93evFudatnx |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safety-Critical+Randomized+Event-Triggered+Learning+of+Gaussian+Process+With+Applications+to+Data-Driven+Predictive+Control&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Zheng%2C+Kaikai&rft.au=Shi%2C+Dawei&rft.au=Shi%2C+Yang&rft.date=2025-06-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=70&rft.issue=6&rft.spage=3920&rft.epage=3935&rft_id=info:doi/10.1109%2FTAC.2024.3523682&rft.externalDocID=10817544 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |