Safety-Critical Randomized Event-Triggered Learning of Gaussian Process With Applications to Data-Driven Predictive Control

Safety and data efficiency are important concerns in data-driven control, especially for nonlinear systems with unknown dynamics and subject to disturbances. In this work, we consider a class of control-affine nonlinear systems with partially unknown dynamics and aim to introduce an event-triggered...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 70; no. 6; pp. 3920 - 3935
Main Authors Zheng, Kaikai, Shi, Dawei, Shi, Yang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9286
1558-2523
DOI10.1109/TAC.2024.3523682

Cover

Abstract Safety and data efficiency are important concerns in data-driven control, especially for nonlinear systems with unknown dynamics and subject to disturbances. In this work, we consider a class of control-affine nonlinear systems with partially unknown dynamics and aim to introduce an event-triggered learning-based control approach with guaranteed safety and improved data utilization efficiency. Specifically, a randomized learning approach is employed to evaluate the safety of state trajectories by defining and estimating its confidence interval, with data from a multisample of randomly generated state trajectories. Using the proposed randomized learning algorithm, a nominal trajectory with a high probability safety guarantee is designed, thus ensuring the disturbed system states to remain within a prespecified range around the nominal trajectory with a sufficiently high probability. Through removing irrelevant data, a local prediction model around the nominal trajectory is learned with satisfactory precision, and is updated online using an event-triggered learning strategy. Based on the learned model, an efficient data-driven predictive controller is designed to force the system states to evolve within the vicinity of the designed safety nominal trajectory. The effectiveness of the proposed event-triggered learning and data-driven control approaches is validated through comprehensive simulation studies.
AbstractList Safety and data efficiency are important concerns in data-driven control, especially for nonlinear systems with unknown dynamics and subject to disturbances. In this work, we consider a class of control-affine nonlinear systems with partially unknown dynamics and aim to introduce an event-triggered learning-based control approach with guaranteed safety and improved data utilization efficiency. Specifically, a randomized learning approach is employed to evaluate the safety of state trajectories by defining and estimating its confidence interval, with data from a multisample of randomly generated state trajectories. Using the proposed randomized learning algorithm, a nominal trajectory with a high probability safety guarantee is designed, thus ensuring the disturbed system states to remain within a prespecified range around the nominal trajectory with a sufficiently high probability. Through removing irrelevant data, a local prediction model around the nominal trajectory is learned with satisfactory precision, and is updated online using an event-triggered learning strategy. Based on the learned model, an efficient data-driven predictive controller is designed to force the system states to evolve within the vicinity of the designed safety nominal trajectory. The effectiveness of the proposed event-triggered learning and data-driven control approaches is validated through comprehensive simulation studies.
Author Zheng, Kaikai
Shi, Yang
Shi, Dawei
Author_xml – sequence: 1
  givenname: Kaikai
  orcidid: 0000-0001-9826-6293
  surname: Zheng
  fullname: Zheng, Kaikai
  email: kaikai.zheng@bit.edu.cn
  organization: MIIT Key Laboratory of Servo Motion System Drive and Control, School of Automation, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Dawei
  orcidid: 0000-0002-3480-7502
  surname: Shi
  fullname: Shi, Dawei
  email: daweishi@bit.edu.cn
  organization: MIIT Key Laboratory of Servo Motion System Drive and Control, School of Automation, Beijing Institute of Technology, Beijing, China
– sequence: 3
  givenname: Yang
  orcidid: 0000-0003-1337-5322
  surname: Shi
  fullname: Shi, Yang
  email: yshi@uvic.ca
  organization: Department of Mechanical Engineering, Faculty of Engineering, University of Victoria, Victoria, BC, Canada
BookMark eNpNkE1LAzEQhoNUsFbvHjwEPG_N53b3WNZPKCha8bhks5Oa0iY1SQX1z5vSHjzNvPDMO_CcooHzDhC6oGRMKamv59NmzAgTYy4ZLyt2hIZUyqpgOQ7QkBBaFTWryhN0GuMyx1IIOkS_r8pA-i6aYJPVaoVflOv92v5Aj2-_wKViHuxiASHnGajgrFtgb_C92sZolcPPwWuIEb_b9IGnm80qtyTrXcTJ4xuVVHETbC7KIPRWp7zjxrsU_OoMHRu1inB-mCP0dnc7bx6K2dP9YzOdFZoJmYpSmonoaQ0dGOCdMJUsa1N1lNb9RGnTUei4IVJxVupeqrITWhBeaqMFM9DzEbra926C_9xCTO3Sb4PLL1vOKK85qRnPFNlTOvgYA5h2E-xahe-WknanuM2K253i9qA4n1zuTywA_MMrOpFC8D-JjXvd
CODEN IETAA9
Cites_doi 10.3182/20070822-3-za-2920.00076
10.1109/TAC.2020.3030877
10.1016/j.automatica.2013.01.002
10.1109/CDC.2018.8619572
10.1017/9781009232487
10.1016/j.automatica.2021.110114
10.1016/j.arcontrol.2021.09.005
10.23919/ACC50511.2021.9483029
10.1146/annurev-control-090419-075625
10.1016/j.arcontrol.2012.09.004
10.1109/TCYB.2018.2868715
10.1109/TAC.2022.3202088
10.1109/TAC.2020.2969713
10.1109/CDC51059.2022.9992739
10.1109/TAC.2021.3059156
10.1109/MCS.2023.3310305
10.1109/JOE.2018.2797558
10.1007/978-1-4471-4610-0
10.1109/TAC.2022.3191760
10.1609/aaai.v35i8.16912
10.1016/j.sysconle.2012.11.004
10.1109/LCSYS.2023.3285785
10.7551/mitpress/7503.003.0006
10.1016/j.arcontrol.2009.07.001
10.1109/LCSYS.2022.3183530
10.1109/CDC51059.2022.9992772
10.1007/978-3-319-21021-6
10.23919/ACC.2018.8431892
10.1109/TRO.2022.3154715
10.1109/TAC.2019.2958840
10.1007/s10515-022-00337-x
10.1109/TIT.2011.2182033
10.1109/TVT.2018.2804891
10.1109/TAC.2022.3148374
10.1109/TAC.2009.2031207
10.1016/j.ifacol.2023.10.1190
10.1016/j.ins.2012.07.014
10.1016/j.automatica.2016.09.032
10.1109/LCSYS.2023.3341346
10.1016/j.jprocont.2014.01.012
10.15607/RSS.2019.XV.054
10.1109/TNNLS.2014.2319052
10.1109/TAC.2020.2966717
10.1109/TCYB.2018.2837874
10.1109/TAC.2019.2959924
10.1115/DSCC2014-6048
10.23919/ACC.2017.7962984
10.1109/TAC.2021.3131988
10.1109/LRA.2023.3309130
10.1016/j.sysconle.2011.05.013
10.1109/TAC.2021.3049335
10.23919/ACC.2019.8814333
10.1016/j.automatica.2021.109597
10.23919/ACC53348.2022.9867378
10.1109/TAC.2018.2876389
10.1016/j.ins.2012.01.047
10.1016/j.ins.2016.07.051
10.1007/s11837-019-03555-z
10.1016/j.automatica.2020.109009
10.1109/LCSYS.2020.3006725
10.1109/TNN.2011.2176141
10.1016/j.automatica.2019.01.023
10.1109/TAC.2005.851439
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TAC.2024.3523682
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Explore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 3935
ExternalDocumentID 10_1109_TAC_2024_3523682
10817544
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China; National Science Foundation of China
  grantid: 62261160575; 62333001
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c245t-65f74d19ebefe3b4f8569f8b119d7acfb1eb3f05a326cd5a6b4c4036cfc42fed3
IEDL.DBID RIE
ISSN 0018-9286
IngestDate Sun Oct 19 00:06:08 EDT 2025
Wed Oct 01 05:56:35 EDT 2025
Wed Aug 27 01:49:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-65f74d19ebefe3b4f8569f8b119d7acfb1eb3f05a326cd5a6b4c4036cfc42fed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9826-6293
0000-0003-1337-5322
0000-0002-3480-7502
PQID 3213930923
PQPubID 85475
PageCount 16
ParticipantIDs proquest_journals_3213930923
ieee_primary_10817544
crossref_primary_10_1109_TAC_2024_3523682
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref56
ref15
ref14
ref58
ref53
ref52
ref11
ref55
Capone (ref17) 2022; 162
ref54
Girard (ref42) 2004
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
Rawlings (ref67) 2017
ref44
ref43
Taylor (ref10) 2020
ref49
ref8
ref7
Matousek (ref59) 2013
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref36
Lederer (ref37) 2019; 32
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref72
Capone (ref12) 2022
ref24
ref68
ref23
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
Umlauft (ref73) 2020; 120
Girard (ref41) 2002; 15
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref26
  doi: 10.3182/20070822-3-za-2920.00076
– ident: ref52
  doi: 10.1109/TAC.2020.3030877
– volume: 32
  year: 2019
  ident: ref37
  article-title: Uniform error bounds for Gaussian process regression with application to safe control
  publication-title: in Proc. 33rd Int. Conf. Neural Inf. Process. Syst.
– ident: ref21
  doi: 10.1016/j.automatica.2013.01.002
– ident: ref44
  doi: 10.1109/CDC.2018.8619572
– ident: ref66
  doi: 10.1017/9781009232487
– ident: ref39
  doi: 10.1016/j.automatica.2021.110114
– start-page: 2609
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2022
  ident: ref12
  article-title: Gaussian process uniform error bounds with unknown hyperparameters for safety-critical applications
– ident: ref3
  doi: 10.1016/j.arcontrol.2021.09.005
– ident: ref32
  doi: 10.23919/ACC50511.2021.9483029
– ident: ref11
  doi: 10.1146/annurev-control-090419-075625
– ident: ref6
  doi: 10.1016/j.arcontrol.2012.09.004
– ident: ref23
  doi: 10.1109/TCYB.2018.2868715
– volume: 15
  start-page: 529
  year: 2002
  ident: ref41
  article-title: Multiple-step ahead prediction for non linear dynamic systemsA Gaussian process treatment with propagation of the uncertainty
  publication-title: Adv. Neural Inf. Process. Syst.
– volume-title: Lectures on Discrete Geometry
  year: 2013
  ident: ref59
– ident: ref71
  doi: 10.1109/TAC.2022.3202088
– ident: ref27
  doi: 10.1109/TAC.2020.2969713
– ident: ref19
  doi: 10.1109/CDC51059.2022.9992739
– ident: ref72
  doi: 10.1109/TAC.2021.3059156
– ident: ref36
  doi: 10.1109/MCS.2023.3310305
– ident: ref4
  doi: 10.1109/JOE.2018.2797558
– ident: ref53
  doi: 10.1007/978-1-4471-4610-0
– ident: ref47
  doi: 10.1109/TAC.2022.3191760
– ident: ref38
  doi: 10.1609/aaai.v35i8.16912
– ident: ref69
  doi: 10.1016/j.sysconle.2012.11.004
– year: 2004
  ident: ref42
  article-title: Approximate methods for propagation of uncertainty with Gaussian process models,
– ident: ref28
  doi: 10.1109/LCSYS.2023.3285785
– ident: ref14
  doi: 10.7551/mitpress/7503.003.0006
– ident: ref20
  doi: 10.1016/j.arcontrol.2009.07.001
– ident: ref49
  doi: 10.1109/LCSYS.2022.3183530
– ident: ref63
  doi: 10.1109/CDC51059.2022.9992772
– ident: ref54
  doi: 10.1007/978-3-319-21021-6
– volume: 162
  start-page: 2609
  volume-title: Proc. 39th Int. Conf. Mach. Learn.
  year: 2022
  ident: ref17
  article-title: Gaussian process uniform error bounds with unknown hyperparameters for safety-critical applications
– ident: ref64
  doi: 10.23919/ACC.2018.8431892
– ident: ref45
  doi: 10.1109/TRO.2022.3154715
– ident: ref48
  doi: 10.1109/TAC.2019.2958840
– ident: ref57
  doi: 10.1007/s10515-022-00337-x
– ident: ref70
  doi: 10.1109/TIT.2011.2182033
– ident: ref31
  doi: 10.1109/TVT.2018.2804891
– volume-title: Model Predictive Control: Theory, Computation, and Design
  year: 2017
  ident: ref67
– ident: ref56
  doi: 10.1109/TAC.2022.3148374
– ident: ref58
  doi: 10.1109/TAC.2009.2031207
– ident: ref40
  doi: 10.1016/j.ifacol.2023.10.1190
– ident: ref1
  doi: 10.1016/j.ins.2012.07.014
– ident: ref2
  doi: 10.1016/j.automatica.2016.09.032
– ident: ref33
  doi: 10.1109/LCSYS.2023.3341346
– ident: ref7
  doi: 10.1016/j.jprocont.2014.01.012
– ident: ref18
  doi: 10.15607/RSS.2019.XV.054
– ident: ref46
  doi: 10.1109/TNNLS.2014.2319052
– ident: ref35
  doi: 10.1109/TAC.2020.2966717
– ident: ref30
  doi: 10.1109/CDC.2018.8619572
– ident: ref9
  doi: 10.1109/TCYB.2018.2837874
– ident: ref34
  doi: 10.1109/TAC.2019.2959924
– ident: ref60
  doi: 10.1115/DSCC2014-6048
– ident: ref22
  doi: 10.23919/ACC.2017.7962984
– ident: ref65
  doi: 10.1109/TAC.2021.3131988
– ident: ref29
  doi: 10.1109/LRA.2023.3309130
– ident: ref68
  doi: 10.1016/j.sysconle.2011.05.013
– ident: ref62
  doi: 10.1109/TAC.2021.3049335
– ident: ref50
  doi: 10.23919/ACC.2019.8814333
– ident: ref61
  doi: 10.1016/j.automatica.2021.109597
– ident: ref5
  doi: 10.23919/ACC53348.2022.9867378
– volume: 120
  volume-title: Proc. 2nd Conf. Learn. Dyn. Control
  year: 2020
  ident: ref73
  article-title: Smart forgetting for safe online learning with Gaussian processes
– ident: ref24
  doi: 10.1109/TAC.2018.2876389
– start-page: 708
  volume-title: Proc. Learn. Dyn. Control
  year: 2020
  ident: ref10
  article-title: Learning for safety-critical control with control barrier functions
– ident: ref8
  doi: 10.1016/j.ins.2012.01.047
– ident: ref16
  doi: 10.1016/j.ins.2016.07.051
– ident: ref43
  doi: 10.1007/s11837-019-03555-z
– ident: ref51
  doi: 10.1016/j.automatica.2020.109009
– ident: ref13
  doi: 10.1109/LCSYS.2020.3006725
– ident: ref15
  doi: 10.1109/TNN.2011.2176141
– ident: ref55
  doi: 10.1016/j.automatica.2019.01.023
– ident: ref25
  doi: 10.1109/TAC.2005.851439
SSID ssj0016441
Score 2.4872825
Snippet Safety and data efficiency are important concerns in data-driven control, especially for nonlinear systems with unknown dynamics and subject to disturbances....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 3920
SubjectTerms Accuracy
Adaptation models
Algorithms
Computational modeling
Confidence intervals
Control systems
Data models
Data-driven control
Dynamical systems
Event detection
event-triggered learning
Gaussian process
Machine learning
Nonlinear control
Nonlinear systems
Prediction models
Predictive control
Predictive models
randomized learning
Safety
Safety critical
safety-critical system
Simulation
Statistical analysis
Training
Trajectory
Uncertainty
Title Safety-Critical Randomized Event-Triggered Learning of Gaussian Process With Applications to Data-Driven Predictive Control
URI https://ieeexplore.ieee.org/document/10817544
https://www.proquest.com/docview/3213930923
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 0018-9286
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwy8EYWCPLAwuCSO48ZjVV5CggGKYIv8OkCIBpV0AP485yRFBYTElsGRLH--l---O0L2AVSqE-VYoo1kQkLMlIt6zABkaICM5T5why8u5dmNOL9L7xqyesWF8d5XxWe-Gz6rXL4r7CQ8laGEZ3Fo2DZP5nuZrMlaXymDYNhrtYsSzLOvnGSkDof9AUaCXHTR20hkxr_ZoGqoyi9NXJmXk2VyOd1YXVXy1J2Upmvff_Rs_PfOV8hS42jSfn0zVsmcH62RxZn2g-vk41qDL9_YdNwBvdIjVzw_vntHj0MdJBti7H4fpnnSpg_rPS2AnurJa-Be0oZlQG8fywfan0mF07KgR7rU7GgctCkuDPmgoFnpoK6N3yA3J8fDwRlrhjEwy0VaMplCT7hYIejgEyMgS6WCzMSxcj1twcQYlkOEwHNpXaqlEVagebRgBQfvkk3SGhUjv0VoqjODbop0godFQgmwGKZKsJEAn5o2OZjCk7_UPTfyKlaJVI5Q5gHKvIGyTTbCac-sqw-6TTpTQPNGKl_zhKO_m0To027_8dsOWeBhwG_1zNIhrXI88bvodZRmr7ptnzli1qQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOUAP5dWKpQV84MLBS-LY3vi42rYs0O4BtqK3yK8pFWJTtdkD7Z_vOMlWCwiJS5TDWLL8eV6eF8BbRKNsYQIvrNNcasy5CdmIO8SSFJDzIqba4eOZnp7IT6fqtC9Wb2thYoxt8lkcpt82lh9qv0xPZcThZZ4att2HB_SVqivXugsaJNXeCV7iYVHeRSUz834-npAvKOSQ7I1Cl-I3LdSOVflLFrcK5vAxzFZb6_JKfgyXjRv66z-6Nv733p_AVm9qsnF3N57Cvbh4BptrDQifw81Xi7H5xVcDD9gXuwj1z_PrGNhByoTkc_Lez9I8T9Z3Yj1jNbIPdnmVqi9ZX2fAvp0339l4LRjOmprt28by_cskT4kwRYSSbGWTLjt-G04OD-aTKe_HMXAvpGq4VjiSITcEO8bCSSyVNli6PDdhZD26nBxzzAh6oX1QVjvpJSlIj14KjKHYgY1FvYgvgClbOjJUdJAiEUkj0ZOjqtFnEqNyA3i3gqe66LpuVK23kpmKoKwSlFUP5QC202mv0XUHPYC9FaBVz5dXVSHI4i0ysmpf_mPZG3g4nR8fVUcfZ5934ZFI437bR5c92Ggul_EV2SCNe93evFudatnx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safety-Critical+Randomized+Event-Triggered+Learning+of+Gaussian+Process+With+Applications+to+Data-Driven+Predictive+Control&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Zheng%2C+Kaikai&rft.au=Shi%2C+Dawei&rft.au=Shi%2C+Yang&rft.date=2025-06-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=70&rft.issue=6&rft.spage=3920&rft.epage=3935&rft_id=info:doi/10.1109%2FTAC.2024.3523682&rft.externalDocID=10817544
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon