Safety-Critical Randomized Event-Triggered Learning of Gaussian Process With Applications to Data-Driven Predictive Control

Safety and data efficiency are important concerns in data-driven control, especially for nonlinear systems with unknown dynamics and subject to disturbances. In this work, we consider a class of control-affine nonlinear systems with partially unknown dynamics and aim to introduce an event-triggered...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 70; no. 6; pp. 3920 - 3935
Main Authors Zheng, Kaikai, Shi, Dawei, Shi, Yang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9286
1558-2523
DOI10.1109/TAC.2024.3523682

Cover

More Information
Summary:Safety and data efficiency are important concerns in data-driven control, especially for nonlinear systems with unknown dynamics and subject to disturbances. In this work, we consider a class of control-affine nonlinear systems with partially unknown dynamics and aim to introduce an event-triggered learning-based control approach with guaranteed safety and improved data utilization efficiency. Specifically, a randomized learning approach is employed to evaluate the safety of state trajectories by defining and estimating its confidence interval, with data from a multisample of randomly generated state trajectories. Using the proposed randomized learning algorithm, a nominal trajectory with a high probability safety guarantee is designed, thus ensuring the disturbed system states to remain within a prespecified range around the nominal trajectory with a sufficiently high probability. Through removing irrelevant data, a local prediction model around the nominal trajectory is learned with satisfactory precision, and is updated online using an event-triggered learning strategy. Based on the learned model, an efficient data-driven predictive controller is designed to force the system states to evolve within the vicinity of the designed safety nominal trajectory. The effectiveness of the proposed event-triggered learning and data-driven control approaches is validated through comprehensive simulation studies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2024.3523682