Preparation of Nano-MnFe2O4 and Its Catalytic Performance of Thermal Decomposition of Ammonium Perchlorate
Nano-MnFe2O4 particles were synthesized by co-precipitation phase inversion method and low-temperature combustion method respectively, using MnCl2, FeCl3, Mn(NO3)2, Fe(NO3)3, NaOH and C6H8O7. X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT...
Saved in:
| Published in | Chinese journal of chemical engineering Vol. 19; no. 6; pp. 1047 - 1051 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
01.12.2011
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1004-9541 2210-321X |
| DOI | 10.1016/S1004-9541(11)60090-6 |
Cover
| Summary: | Nano-MnFe2O4 particles were synthesized by co-precipitation phase inversion method and low-temperature combustion method respectively, using MnCl2, FeCl3, Mn(NO3)2, Fe(NO3)3, NaOH and C6H8O7. X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), thermogravim-etry-differential thermal analysis (TG-DTA) and differential scanning calorimetry (DSC) were used to characterize the structure, morphology, thermal stability of MnFe2O4 and its catalytic performance to ammonium perchlorate. Results showed that single-phased and uniform spinel MnFe2O4 was obtained. The average particle size was about 30 and 20 nm. The infrared absorption peaks appeared at about 420 and 574 cm-1, and the particles were stable below 524 ℃. Using the two prepared catalysts, the higher thermal decomposition temperature of ammonium perchlorate was decreased by 77.3 and 84.9 ℃ respectively, while the apparent decomposition heat was increased by 482.5 and 574.3 J?g?1. The catalytic mechanism could be explained by the favorable electron transfer space provided by outer d orbit of transition metal ions and the high specific surface absorption effect of MnFe2O4 particles. |
|---|---|
| Bibliography: | MnFe2O4, co-precipitation phase inversion method, low-temperature combustion method, ammoniumperchlorate, catalysis HAN Aijun, LIAO Juanjuan , YE Mingquan , LI Yan , PENG Xinhua School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China Nano-MnFe2O4 particles were synthesized by co-precipitation phase inversion method and low-temperature combustion method respectively, using MnCl2, FeCl3, Mn(NO3)2, Fe(NO3)3, NaOH and C6H8O7. X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), thermogravim-etry-differential thermal analysis (TG-DTA) and differential scanning calorimetry (DSC) were used to characterize the structure, morphology, thermal stability of MnFe2O4 and its catalytic performance to ammonium perchlorate. Results showed that single-phased and uniform spinel MnFe2O4 was obtained. The average particle size was about 30 and 20 nm. The infrared absorption peaks appeared at about 420 and 574 cm-1, and the particles were stable below 524 ℃. Using the two prepared catalysts, the higher thermal decomposition temperature of ammonium perchlorate was decreased by 77.3 and 84.9 ℃ respectively, while the apparent decomposition heat was increased by 482.5 and 574.3 J?g?1. The catalytic mechanism could be explained by the favorable electron transfer space provided by outer d orbit of transition metal ions and the high specific surface absorption effect of MnFe2O4 particles. 11-3270/TQ ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1004-9541 2210-321X |
| DOI: | 10.1016/S1004-9541(11)60090-6 |