Approximate Life-Cycle Assessment of Product Concepts Using Learning Systems

Summary Parametric life‐cycle assessment (LCA) models have been integrated with traditional design tools and used to demonstrate the rapid elucidation of holistic, analytical trade‐offs among detailed design variations. A different approach is needed, however, if analytical environmental assessment...

Full description

Saved in:
Bibliographic Details
Published inJournal of industrial ecology Vol. 4; no. 4; pp. 61 - 81
Main Authors Sousa, Inês, Wallace, David, Eisenhard, Julie L.
Format Journal Article
LanguageEnglish
Published 238 Main St., Suite 500, Cambridge, MA 02142-1046 USA MIT Press 01.10.2000
Subjects
Online AccessGet full text
ISSN1088-1980
1530-9290
DOI10.1162/10881980052541954

Cover

More Information
Summary:Summary Parametric life‐cycle assessment (LCA) models have been integrated with traditional design tools and used to demonstrate the rapid elucidation of holistic, analytical trade‐offs among detailed design variations. A different approach is needed, however, if analytical environmental assessment is to be incorporated in very early design stages. During early stages, there may be competing product concepts with dramatic differences. Detailed information is scarce, and decisions must be made quickly. This article explores an approximate method for providing preliminary LCAs. In this method, learning algorithms trained using the known characteristics of existing products might allow environmental aspects of new product concepts to be approximated quickly during conceptual design without defining new models. Artificial neural networks are trained to generalize on product attributes, which are characteristics of product concepts, and environmental inventory data from pre‐existing LCAs. The product design team then queries the trained artificial model with new high‐level attributes to quickly obtain an impact assessment for a new product concept. Foundations for the learning system approach are established, and then an application within the distributed object‐based modeling environment (DOME) is provided. Tests have shown that it is possible to predict life‐cycle energy consumption, and that the method could be used to predict solid waste, greenhouse effect, ozone depletion, acidification, eutrophication, winter and summer smog.
Bibliography:istex:FEAFD13B853A6B06A58F437A5A2E0FBB80133D52
ArticleID:JIEC61
ark:/67375/WNG-MXPWNRRP-5
ISSN:1088-1980
1530-9290
DOI:10.1162/10881980052541954