A comparison of two Hammerstein model identification algorithms

Two algorithms for least-squares estimation of parameters of a Hammerstein model are compared. Numerical examples demonstrate that the iterative method of Narendra and Gallman produces significantly smaller parameter covariance and slightly smaller rms error than the noniterative method of Chang and...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 21; no. 1; pp. 124 - 126
Main Author Gallman, P.
Format Journal Article
LanguageEnglish
Published IEEE 01.02.1976
Subjects
Online AccessGet full text
ISSN0018-9286
DOI10.1109/TAC.1976.1101123

Cover

More Information
Summary:Two algorithms for least-squares estimation of parameters of a Hammerstein model are compared. Numerical examples demonstrate that the iterative method of Narendra and Gallman produces significantly smaller parameter covariance and slightly smaller rms error than the noniterative method of Chang and Luus, as expected from an analysis of the parameter estimators. In addition, the iterative algorithm is faster for high-order systems.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9286
DOI:10.1109/TAC.1976.1101123