Chaotic Metaheuristics with Multi-Spiking Neural Network Based Cloud Intrusion Detection

Cloud Computing (CC) provides data storage options as well as computing services to its users through the Internet. On the other hand, cloud users are concerned about security and privacy issues due to the increased number of cyberattacks. Data protection has become an important issue since the user...

Full description

Saved in:
Bibliographic Details
Published inComputers, materials & continua Vol. 74; no. 3; pp. 6101 - 6118
Main Authors Yamin, Mohammad, Bajaba, Saleh, Mahmoud AlKubaisy, Zenah
Format Journal Article
LanguageEnglish
Published Henderson Tech Science Press 2023
Subjects
Online AccessGet full text
ISSN1546-2226
1546-2218
1546-2226
DOI10.32604/cmc.2023.033677

Cover

More Information
Summary:Cloud Computing (CC) provides data storage options as well as computing services to its users through the Internet. On the other hand, cloud users are concerned about security and privacy issues due to the increased number of cyberattacks. Data protection has become an important issue since the users’ information gets exposed to third parties. Computer networks are exposed to different types of attacks which have extensively grown in addition to the novel intrusion methods and hacking tools. Intrusion Detection Systems (IDSs) can be used in a network to manage suspicious activities. These IDSs monitor the activities of the CC environment and decide whether an activity is legitimate (normal) or malicious (intrusive) based on the established system’s confidentiality, availability and integrity of the data sources. In the current study, a Chaotic Metaheuristics with Optimal Multi-Spiking Neural Network-based Intrusion Detection (CMOMSNN-ID) model is proposed to secure the cloud environment. The presented CMOMSNN-ID model involves the Chaotic Artificial Bee Colony Optimization-based Feature Selection (CABC-FS) technique to reduce the curse of dimensionality. In addition, the Multi-Spiking Neural Network (MSNN) classifier is also used based on the simulation of brain functioning. It is applied to resolve pattern classification problems. In order to fine-tune the parameters relevant to the MSNN model, the Whale Optimization Algorithm (WOA) is employed to boost the classification results. To demonstrate the superiority of the proposed CMOMSNN-ID model, a useful set of simulations was performed. The simulation outcomes inferred that the proposed CMOMSNN-ID model accomplished a superior performance over other models with a maximum accuracy of 99.20%.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1546-2226
1546-2218
1546-2226
DOI:10.32604/cmc.2023.033677