A 6-b 600 MS/s SAR ADC with a new switching procedure of 2-b/stage and self- locking comparators

This paper presents a 6-b successive approximation register (SAR) ADC at the sampling rate of 600 MHz in a 65 nm CMOS process. To pursue high speed, this design employs the idea of the 2-b/stage. Based on this, the proposed structure with a new switching procedure is presented. Compared with traditi...

Full description

Saved in:
Bibliographic Details
Published inJournal of semiconductors Vol. 36; no. 5; pp. 144 - 150
Main Author 向济璇 陈迟晓 叶凡 许俊 李宁 任俊彦
Format Journal Article
LanguageEnglish
Published 01.05.2015
Subjects
Online AccessGet full text
ISSN1674-4926
DOI10.1088/1674-4926/36/5/055009

Cover

More Information
Summary:This paper presents a 6-b successive approximation register (SAR) ADC at the sampling rate of 600 MHz in a 65 nm CMOS process. To pursue high speed, this design employs the idea of the 2-b/stage. Based on this, the proposed structure with a new switching procedure is presented. Compared with traditional structures, it optimizes problems cause by mismatches of DACs and saves power. In addition, this paper takes advantage of dis- tributed comparator topology to improve the speed, while the proposed structure and self-locking technique lighten the kickback and offset caused by multiple comparators. The measurement results demonstrate that the signal-to- noise plus distortion ratio (SNDR) is 32.13 dB and the spurious-free dynamic range (SFDR) is 44.05 dB at 600 MS/s with 5.6 MHz input. By contrast, the SNDR/SFDR respectively drops to 28.46/39.20 dB with Nyquist input. Fabricated in a TSMC 65 nm process, the SAR ADC core occupies an area of 0.045 mm2 and consumes power of 5.01 mW on a supply voltage of 1.2 V resulting in a figure of merit of 252 fJ/conversion-step.
Bibliography:Xiang Jixuan, Chen Chixiao, Ye Fan, Xu Jun, Li Ning, and Ren Junyan State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203, China
SAR ADC; high speed; 2-b/stage; new switching procedure; self-locking
11-5781/TN
This paper presents a 6-b successive approximation register (SAR) ADC at the sampling rate of 600 MHz in a 65 nm CMOS process. To pursue high speed, this design employs the idea of the 2-b/stage. Based on this, the proposed structure with a new switching procedure is presented. Compared with traditional structures, it optimizes problems cause by mismatches of DACs and saves power. In addition, this paper takes advantage of dis- tributed comparator topology to improve the speed, while the proposed structure and self-locking technique lighten the kickback and offset caused by multiple comparators. The measurement results demonstrate that the signal-to- noise plus distortion ratio (SNDR) is 32.13 dB and the spurious-free dynamic range (SFDR) is 44.05 dB at 600 MS/s with 5.6 MHz input. By contrast, the SNDR/SFDR respectively drops to 28.46/39.20 dB with Nyquist input. Fabricated in a TSMC 65 nm process, the SAR ADC core occupies an area of 0.045 mm2 and consumes power of 5.01 mW on a supply voltage of 1.2 V resulting in a figure of merit of 252 fJ/conversion-step.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-4926
DOI:10.1088/1674-4926/36/5/055009