Ion Photon Emission Microscope for Single Event Effect Testing in CIAE
Ion photon emission microscopy (IPEM) is a new ion-induced emission microscopy. It employs a broad ion beam with high energy and low fluence rate impinging on a sample. The position of a single ion is detected by an optical system with objective lens, prism, microscope tube and charge coupled device...
Saved in:
| Published in | Chinese physics letters Vol. 34; no. 7; pp. 71 - 75 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
01.06.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0256-307X 1741-3540 |
| DOI | 10.1088/0256-307X/34/7/073401 |
Cover
| Summary: | Ion photon emission microscopy (IPEM) is a new ion-induced emission microscopy. It employs a broad ion beam with high energy and low fluence rate impinging on a sample. The position of a single ion is detected by an optical system with objective lens, prism, microscope tube and charge coupled device (CCD). A thin ZnS film doped with Ag ions is used as a luminescent material. Generation efficiency and transmission efficiency of photons in the ZnS(Ag) film created by irradiated Cl ions are calculated. A single Cl ion optical microscopic image is observed by high quantum efficiency CCD. The resolution of a single Cl ion given in this IPEM system is 6μm. Several factors influencing the resolution are discussed. A silicon diode is used to collect the electrical signals caused by the incident ions. Effective and accidental coincidence of optical images and electronic signals are illustrated. A two-dimensional map of single event effect is drawn out according to the data of effective coincidence. |
|---|---|
| Bibliography: | 11-1959/O4 Ion photon emission microscopy (IPEM) is a new ion-induced emission microscopy. It employs a broad ion beam with high energy and low fluence rate impinging on a sample. The position of a single ion is detected by an optical system with objective lens, prism, microscope tube and charge coupled device (CCD). A thin ZnS film doped with Ag ions is used as a luminescent material. Generation efficiency and transmission efficiency of photons in the ZnS(Ag) film created by irradiated Cl ions are calculated. A single Cl ion optical microscopic image is observed by high quantum efficiency CCD. The resolution of a single Cl ion given in this IPEM system is 6μm. Several factors influencing the resolution are discussed. A silicon diode is used to collect the electrical signals caused by the incident ions. Effective and accidental coincidence of optical images and electronic signals are illustrated. A two-dimensional map of single event effect is drawn out according to the data of effective coincidence. Yan-Wen Zhang, Gang Guo, Jian-Cheng Liu,Shu-Ting Shi, Ying-Can Qin, Li-Li Li, Lin-Feng He(Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413) |
| ISSN: | 0256-307X 1741-3540 |
| DOI: | 10.1088/0256-307X/34/7/073401 |