The human orbitofrontal cortex, vmPFC, and anterior cingulate cortex effective connectome: emotion, memory, and action

The human orbitofrontal cortex, ventromedial prefrontal cortex (vmPFC), and anterior cingulate cortex are involved in reward processing and thereby in emotion but are also implicated in episodic memory. To understand these regions better, the effective connectivity between 360 cortical regions and 2...

Full description

Saved in:
Bibliographic Details
Published inCerebral cortex (New York, N.Y. 1991) Vol. 33; no. 2; pp. 330 - 356
Main Authors Rolls, Edmund T, Deco, Gustavo, Huang, Chu-Chung, Feng, Jianfeng
Format Journal Article
LanguageEnglish
Published United States 20.12.2022
Subjects
Online AccessGet full text
ISSN1047-3211
1460-2199
1460-2199
DOI10.1093/cercor/bhac070

Cover

More Information
Summary:The human orbitofrontal cortex, ventromedial prefrontal cortex (vmPFC), and anterior cingulate cortex are involved in reward processing and thereby in emotion but are also implicated in episodic memory. To understand these regions better, the effective connectivity between 360 cortical regions and 24 subcortical regions was measured in 172 humans from the Human Connectome Project and complemented with functional connectivity and diffusion tractography. The orbitofrontal cortex has effective connectivity from gustatory, olfactory, and temporal visual, auditory, and pole cortical areas. The orbitofrontal cortex has connectivity to the pregenual anterior and posterior cingulate cortex and hippocampal system and provides for rewards to be used in memory and navigation to goals. The orbitofrontal and pregenual anterior cortex have connectivity to the supracallosal anterior cingulate cortex, which projects to midcingulate and other premotor cortical areas and provides for action-outcome learning including limb withdrawal or flight or fight to aversive and nonreward stimuli. The lateral orbitofrontal cortex has outputs to language systems in the inferior frontal gyrus. The medial orbitofrontal cortex connects to the nucleus basalis of Meynert and the pregenual cingulate to the septum, and damage to these cortical regions may contribute to memory impairments by disrupting cholinergic influences on the neocortex and hippocampus.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1047-3211
1460-2199
1460-2199
DOI:10.1093/cercor/bhac070