Energy-efficient scheduling for flexible job shop under multi-resource constraints using non-dominated sorting teaching-learning-based optimization algorithm

Due to the fact that the real manufacturing processes are often constrained by many kinds of resources and the trend that the energy consumption of factories is regulated more and more strictly, this paper studies the energy-efficient multi-resource flexible job shop scheduling problem (EE-MRFJSP)....

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent & fuzzy systems Vol. 43; no. 1; pp. 409 - 423
Main Authors Wang, Jianhua, Zhu, Kai, Peng, Yongtao, Zhu, Kang
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.06.2022
Sage Publications Ltd
Subjects
Online AccessGet full text
ISSN1064-1246
1875-8967
DOI10.3233/JIFS-212258

Cover

More Information
Summary:Due to the fact that the real manufacturing processes are often constrained by many kinds of resources and the trend that the energy consumption of factories is regulated more and more strictly, this paper studies the energy-efficient multi-resource flexible job shop scheduling problem (EE-MRFJSP). The goal is to minimize the energy consumption and completion time for all of the jobs’ production. Firstly, a general mathematic model for EE-MRFJSP is set up, in which the unit energy consumptions of the main resource’s different states are varied, and a constraint formula to ensure no crossover working periods for any resource is included. Then, a non-dominated sorting teaching-learning-based optimization(NSTLBO) algorithm is proposed to solving the problem, the details of NSTLBO include the real encoding method, Giffler Thompson rule for decoding, non-dominated sorting rule to rank the pareto sets and crowding distance of solution for maintaining the population’s diversity, and the traditional two evolving stages: teacher education and student mutual study. Finally, comparative experiments are made based on some new designed instances, and the results verify our proposed NSTLBO algorithm can effectively solve the EE-MMFJSP, and has obvious advantages by comparing with NSGA-II, NRGA, and MOPSO.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1064-1246
1875-8967
DOI:10.3233/JIFS-212258