Admittance Relaxation Time Distribution (aRTD) for Quantification of Protein Concentration

The admittance relaxation time distribution (aRTD) has been proposed for the quantification of protein (albumin and ɣ-globulin) concentration <inline-formula> <tex-math notation="LaTeX">c </tex-math></inline-formula>. The aRTD extracts peaks of distribution function...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 25; no. 3; pp. 4135 - 4142
Main Authors Wicaksono, Arbariyanto Mahmud, Kawashima, Daisuke, Takei, Masahiro
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2024.3512482

Cover

More Information
Summary:The admittance relaxation time distribution (aRTD) has been proposed for the quantification of protein (albumin and ɣ-globulin) concentration <inline-formula> <tex-math notation="LaTeX">c </tex-math></inline-formula>. The aRTD extracts peaks of distribution function ɣ [S] at relaxation times <inline-formula> <tex-math notation="LaTeX">\tau </tex-math></inline-formula> [s] from measured admittance <inline-formula> <tex-math notation="LaTeX">Y </tex-math></inline-formula> [S]. In order to clarify the relationship between ɣ, <inline-formula> <tex-math notation="LaTeX">\tau </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">c </tex-math></inline-formula>, aRTD was performed on solutions and porcine subcutaneous adipose tissue (SAT) with an injected current frequency <inline-formula> <tex-math notation="LaTeX">f </tex-math></inline-formula> from 10 Hz to 1 MHz under the albumin concentration <inline-formula> <tex-math notation="LaTeX">^{\text {Alb}} {c} </tex-math></inline-formula> of 0.80-2.30 g/dL, the ɣ-globulin concentration <inline-formula> <tex-math notation="LaTeX">^{\text {Glo}} {c}~{R} ^{{2}} </tex-math></inline-formula> above 0.8, which is much larger than <inline-formula> <tex-math notation="LaTeX">{R} ^{{2}} </tex-math></inline-formula> between <inline-formula> <tex-math notation="LaTeX">c </tex-math></inline-formula> and P1 extracted by iRTD. The aRTD on SAT provides additional correlation through ɣP2 at <inline-formula> <tex-math notation="LaTeX">\tau _{\text {P2}} </tex-math></inline-formula>, which increases proportionally to <inline-formula> <tex-math notation="LaTeX">^{\text {Glo}} {c} </tex-math></inline-formula> and inversely proportional to <inline-formula> <tex-math notation="LaTeX">^{\text {Alb}} {c} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">^{\text {PM}} {c} </tex-math></inline-formula>. The average fitting error <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula> of aRTD is, moreover, smaller than <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula> of iRTD by 12%, which highlights aRTD accuracy in the fitting.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2024.3512482