A Multi-Layer Feedback System Approach to Resilient Connectivity of Remotely Deployed Mobile Internet of Things

Enabling the Internet of Things in remote environments without traditional communication infrastructure requires a multi-layer network architecture. Devices in the overlay network such as unmanned aerial vehicles (UAVs) are required to provide coverage to underlay devices as well as remain connected...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cognitive communications and networking Vol. 4; no. 2; pp. 422 - 432
Main Authors Farooq, Muhammad Junaid, Quanyan Zhu
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2332-7731
2332-7731
DOI10.1109/TCCN.2018.2837907

Cover

More Information
Summary:Enabling the Internet of Things in remote environments without traditional communication infrastructure requires a multi-layer network architecture. Devices in the overlay network such as unmanned aerial vehicles (UAVs) are required to provide coverage to underlay devices as well as remain connected to other overlay devices to exploit device-to-device (D2D) communication. The coordination, planning, and design of such overlay networks constrained by the underlay devices is a challenging problem. Existing frameworks for placement of UAVs do not consider the lack of backhaul connectivity and the need for D2D communication. Furthermore, they ignore the dynamical aspects of connectivity in such networks which presents additional challenges. For instance, the connectivity of devices can be affected by changes in the network, e.g., the mobility of underlay devices or unavailability of overlay devices due to failure or adversarial attacks. To this end, this work proposes a feedback based adaptive, self-configurable, and resilient framework for the overlay network that cognitively adapts to the changes in the network to provide reliable connectivity between spatially dispersed smart devices. Results show that the proposed framework requires significantly lower number of aerial base stations to provide higher coverage and connectivity to remotely deployed mobile devices as compared to existing approaches.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2332-7731
2332-7731
DOI:10.1109/TCCN.2018.2837907