Synthesis of ε-Caprolactone by Oxidation of Cyclohexanone with Monoperoxysuccinic Acid

In the absence of catalyst, 70% hydrogen peroxide was used to oxidize succinic anhydride to solid monoperoxysuccinic acid(PSA). Then PSA was applied to synthesis of ε-caprolactone(ε-CL) by oxidation of cyclohexanone in the heterogeneous system. In order to achieve material recycle, solid precipitate...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of chemical engineering Vol. 21; no. 12; pp. 1404 - 1409
Main Author 陈建 赵小双 张光旭 陈波 蔡卫权
Format Journal Article
LanguageEnglish
Published 01.12.2013
Subjects
Online AccessGet full text
ISSN1004-9541
2210-321X
DOI10.1016/S1004-9541(13)60643-6

Cover

More Information
Summary:In the absence of catalyst, 70% hydrogen peroxide was used to oxidize succinic anhydride to solid monoperoxysuccinic acid(PSA). Then PSA was applied to synthesis of ε-caprolactone(ε-CL) by oxidation of cyclohexanone in the heterogeneous system. In order to achieve material recycle, solid precipitated in the process of synthesizing ε-CL was dehydrated via reactive distillation followed by recrystallization to prepare succinic anhydride, which was characterized by IR(infrared spectra) and1HNMR(1H nuclear magnetic resonance). Effects of molar ratio of PSA to cyclohexanone, acetic acid dosage, reaction temperature, reaction time on conversion of cyclohexanone, yield and selectivity of ε-CL were investigated respectively. The results indicated that conversion of cyclohexanone, yield and selectivity of ε-CL were upto 98.1%, 97.5% and 99.4% respectively under the optimal conditions. In addition, in the process of synthesizing succinic anhydride, the optimal yield of succinic anhydride reached 67.4%.
Bibliography:In the absence of catalyst, 70% hydrogen peroxide was used to oxidize succinic anhydride to solid monoperoxysuccinic acid(PSA). Then PSA was applied to synthesis of ε-caprolactone(ε-CL) by oxidation of cyclohexanone in the heterogeneous system. In order to achieve material recycle, solid precipitated in the process of synthesizing ε-CL was dehydrated via reactive distillation followed by recrystallization to prepare succinic anhydride, which was characterized by IR(infrared spectra) and1HNMR(1H nuclear magnetic resonance). Effects of molar ratio of PSA to cyclohexanone, acetic acid dosage, reaction temperature, reaction time on conversion of cyclohexanone, yield and selectivity of ε-CL were investigated respectively. The results indicated that conversion of cyclohexanone, yield and selectivity of ε-CL were upto 98.1%, 97.5% and 99.4% respectively under the optimal conditions. In addition, in the process of synthesizing succinic anhydride, the optimal yield of succinic anhydride reached 67.4%.
CHEN Jian;ZHAO Xiaoshuang;ZHANG Guangxu;CHEN Bo;CAI Weiquan( School of Chemical Engineering, Wuhan University of Technology, Wuhan 430070, China)
monoperoxysuccinic acid; cyclohexanone; ε-caprolactone; reactive distillation; recrystallization
11-3270/TQ
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1004-9541
2210-321X
DOI:10.1016/S1004-9541(13)60643-6