Effect of AB2-based alloy addition on structure and electrochemical properties of La0.5Pr0.2Zr0.1Mg0.2Ni2.75Co0.45Fe0.1Al0.2 hydrogen storage alloy
TheLa0.5Pr0.2Zr0.1Mg0.2Ni2.75Co0.45Fe0.1Al0.2(M0 and Zr0.65Ti0.35(Mn0.2V0.2Cr0.15Ni0.45)l.76 (M2) hydrogen storage alloys were prepared by inductive melting. In addition, the M1+30 wt.%M2 composites were successively prepared by using high-energy ball milling technology. From the X-ray diffraction (...
Saved in:
| Published in | Journal of rare earths Vol. 31; no. 4; pp. 386 - 394 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.04.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1002-0721 2509-4963 |
| DOI | 10.1016/S1002-0721(12)60292-0 |
Cover
| Summary: | TheLa0.5Pr0.2Zr0.1Mg0.2Ni2.75Co0.45Fe0.1Al0.2(M0 and Zr0.65Ti0.35(Mn0.2V0.2Cr0.15Ni0.45)l.76 (M2) hydrogen storage alloys were prepared by inductive melting. In addition, the M1+30 wt.%M2 composites were successively prepared by using high-energy ball milling technology. From the X-ray diffraction (XRD) analysis, it was found that M1 and M2 alloys still retained their respective main phases in the MI+30 wt.%M2 composites. The scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) indicated that the decrease in discharge capacity of MI and M2 alloy electrodes was ascribed to the oxidation-dissolution of La, Pr, Mg and Ti, Mn, V, Cr active elements, respectively. The electrochemical studies showed that the M1+30 wt.%M2 composite electrode ball milling for 5 rain exhibited excellence cyclic stability (92.3%) after 80 charge/discharge cycles, which was higher than 77.7 % and 85.6% of MI and M2 alloy electrodes, respectively. Moreover, at the discharge current density of 1200 mA/g, the high rate dis- charge ability (HRD) of the M1+30 wt.%M2 composite electrode increased from 61.5% (5 rain) to 70.3% (10 rain). According to the linear polarization, Tafel polarization and cyclic voltammograms (CV), the electrochemical kinetics of hydrogen reaction on the sur- face of the electrode and hydrogen diffusion rate in the bulk of alloy were also improved in the ML+30 wt.%M2composite with in- creasing ball milling time. |
|---|---|
| Bibliography: | 11-2788/TF TheLa0.5Pr0.2Zr0.1Mg0.2Ni2.75Co0.45Fe0.1Al0.2(M0 and Zr0.65Ti0.35(Mn0.2V0.2Cr0.15Ni0.45)l.76 (M2) hydrogen storage alloys were prepared by inductive melting. In addition, the M1+30 wt.%M2 composites were successively prepared by using high-energy ball milling technology. From the X-ray diffraction (XRD) analysis, it was found that M1 and M2 alloys still retained their respective main phases in the MI+30 wt.%M2 composites. The scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) indicated that the decrease in discharge capacity of MI and M2 alloy electrodes was ascribed to the oxidation-dissolution of La, Pr, Mg and Ti, Mn, V, Cr active elements, respectively. The electrochemical studies showed that the M1+30 wt.%M2 composite electrode ball milling for 5 rain exhibited excellence cyclic stability (92.3%) after 80 charge/discharge cycles, which was higher than 77.7 % and 85.6% of MI and M2 alloy electrodes, respectively. Moreover, at the discharge current density of 1200 mA/g, the high rate dis- charge ability (HRD) of the M1+30 wt.%M2 composite electrode increased from 61.5% (5 rain) to 70.3% (10 rain). According to the linear polarization, Tafel polarization and cyclic voltammograms (CV), the electrochemical kinetics of hydrogen reaction on the sur- face of the electrode and hydrogen diffusion rate in the bulk of alloy were also improved in the ML+30 wt.%M2composite with in- creasing ball milling time. La-Mg-Ni-based alloy; Zr-based alloy; electrochemical properties; rare earths LU Zhao , QIN Ming , JIANG Weiqing , QING Peilin , LIU Shuhui (1. Department of Physics and Electronic Engineering, Baise University, Baise 533000, China; 2. College of Physics Science and Technology Guangxi Univer sity, Nanning 530004, China) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1002-0721 2509-4963 |
| DOI: | 10.1016/S1002-0721(12)60292-0 |