THE OPTIMIZED BLOCK-REGRESSION-BASED FUSION ALGORITHM FOR PANSHARPENING OF VERY HIGH RESOLUTION SATELLITE IMAGERY

Pan-sharpening of very high resolution remotely sensed imagery need enhancing spatial details while preserving spectral characteristics, and adjusting the sharpened results to realize the different emphases between the two abilities. In order to meet the requirements, this paper is aimed at providin...

Full description

Saved in:
Bibliographic Details
Published inInternational archives of the photogrammetry, remote sensing and spatial information sciences. Vol. XLI-B7; pp. 739 - 746
Main Authors Zhang, J. X., Yang, J. H., Reinartz, P.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Gottingen Copernicus GmbH 21.06.2016
Copernicus Publications
Subjects
Online AccessGet full text
ISSN2194-9034
1682-1750
1682-1777
2194-9034
DOI10.5194/isprs-archives-XLI-B7-739-2016

Cover

More Information
Summary:Pan-sharpening of very high resolution remotely sensed imagery need enhancing spatial details while preserving spectral characteristics, and adjusting the sharpened results to realize the different emphases between the two abilities. In order to meet the requirements, this paper is aimed at providing an innovative solution. The block-regression-based algorithm (BR), which was previously presented for fusion of SAR and optical imagery, is firstly applied to sharpen the very high resolution satellite imagery, and the important parameter for adjustment of fusion result, i.e., block size, is optimized according to the two experiments for Worldview-2 and QuickBird datasets in which the optimal block size is selected through the quantitative comparison of the fusion results of different block sizes. Compared to five fusion algorithms (i.e., PC, CN, AWT, Ehlers, BDF) in fusion effects by means of quantitative analysis, BR is reliable for different data sources and can maximize enhancement of spatial details at the expense of a minimum spectral distortion.
Bibliography:ObjectType-Article-1
ObjectType-Feature-2
SourceType-Conference Papers & Proceedings-1
content type line 22
ISSN:2194-9034
1682-1750
1682-1777
2194-9034
DOI:10.5194/isprs-archives-XLI-B7-739-2016