XAI-HD: an explainable artificial intelligence framework for heart disease detection
Cardiovascular disease (CVD) is the leading global cause of death, highlighting the urgent need for early, accurate, and interpretable diagnostic tools. However, many AI-based heart disease prediction models lack transparency, hindering their acceptance in clinical settings. This study proposes XAI-...
Saved in:
| Published in | The Artificial intelligence review Vol. 58; no. 12; p. 385 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
17.10.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1573-7462 0269-2821 1573-7462 |
| DOI | 10.1007/s10462-025-11385-6 |
Cover
| Abstract | Cardiovascular disease (CVD) is the leading global cause of death, highlighting the urgent need for early, accurate, and interpretable diagnostic tools. However, many AI-based heart disease prediction models lack transparency, hindering their acceptance in clinical settings. This study proposes XAI-HD, a hybrid framework integrating machine learning (ML), deep learning (DL), and explainable AI (XAI) techniques for heart disease detection. The framework systematically addresses key challenges, including class imbalance, missing data, and feature inconsistency, through advanced preprocessing and class-balancing methods such as OSS, NCR, SMOTEN, ADASYN, SMOTETomek, and SMOTEENN. Comparative performance evaluations across multiple datasets (CHD, FHD, SHD) demonstrate that XAI-HD reduces classification error rates by 20–25% compared to traditional ML-based models, achieving superior accuracy, precision, recall, and F1-score. Additionally, SHAP and LIME-based feature importance analysis enhances model interpretability, fostering trust among medical professionals. The proposed framework holds significant real-world applicability, including seamless integration into hospital decision support systems, electronic health records (EHR), and real-time cardiac risk assessment platforms. Unlike conventional AI-driven cardiovascular risk prediction models, XAI-HD offers a more balanced, interpretable, and computationally efficient solution, ensuring both predictive accuracy and practical feasibility in clinical environments. Statistical validation using Wilcoxon signed-rank tests confirms the performance gains, and complexity analysis shows the framework is scalable for large-scale deployment. |
|---|---|
| AbstractList | Cardiovascular disease (CVD) is the leading global cause of death, highlighting the urgent need for early, accurate, and interpretable diagnostic tools. However, many AI-based heart disease prediction models lack transparency, hindering their acceptance in clinical settings. This study proposes XAI-HD, a hybrid framework integrating machine learning (ML), deep learning (DL), and explainable AI (XAI) techniques for heart disease detection. The framework systematically addresses key challenges, including class imbalance, missing data, and feature inconsistency, through advanced preprocessing and class-balancing methods such as OSS, NCR, SMOTEN, ADASYN, SMOTETomek, and SMOTEENN. Comparative performance evaluations across multiple datasets (CHD, FHD, SHD) demonstrate that XAI-HD reduces classification error rates by 20–25% compared to traditional ML-based models, achieving superior accuracy, precision, recall, and F1-score. Additionally, SHAP and LIME-based feature importance analysis enhances model interpretability, fostering trust among medical professionals. The proposed framework holds significant real-world applicability, including seamless integration into hospital decision support systems, electronic health records (EHR), and real-time cardiac risk assessment platforms. Unlike conventional AI-driven cardiovascular risk prediction models, XAI-HD offers a more balanced, interpretable, and computationally efficient solution, ensuring both predictive accuracy and practical feasibility in clinical environments. Statistical validation using Wilcoxon signed-rank tests confirms the performance gains, and complexity analysis shows the framework is scalable for large-scale deployment. |
| ArticleNumber | 385 |
| Author | Kazi, Mohsin Talukder, Md. Alamin Khraisat, Ansam Talaat, Amira Samy |
| Author_xml | – sequence: 1 givenname: Md. Alamin orcidid: 0000-0002-3192-1000 surname: Talukder fullname: Talukder, Md. Alamin email: alamin.cse@iubat.edu organization: Department of Computer Science and Engineering, International University of Business Agriculture and Technology – sequence: 2 givenname: Amira Samy surname: Talaat fullname: Talaat, Amira Samy organization: Computers and Systems Department, Electronics Research Institute – sequence: 3 givenname: Mohsin orcidid: 0000-0002-5611-0378 surname: Kazi fullname: Kazi, Mohsin email: mkazi@ksu.edu.sa organization: Department of Pharmaceutics, College of Pharmacy, King Saud University – sequence: 4 givenname: Ansam surname: Khraisat fullname: Khraisat, Ansam email: ansam.khraisat@deakin.edu.au organization: School of Information Technology, Deakin University |
| BookMark | eNqNkF1LwzAYhYNMcJv-Aa8CXlfz0aSrd2N-bDDwZoJ3IU3fzMwurUnH3L-3s4JeiVd5Cec8HJ4RGvjaA0KXlFxTQrKbSEkqWUKYSCjlE5HIEzSkIuNJ1v0Pft1naBTjhhAiWMqHaPUyXSTzu1usPYaPptLO66ICrEPrrDNOV9j5FqrKrcEbwDboLezr8IZtHfArdDlcugg6Ai6hBdO62p-jU6urCBff7xg9P9yvZvNk-fS4mE2XiaG56DbKDLiQlJVSl6U1JMslnQiii5SlILgRVts0L3LNC255akwu7ESDpUAyLigfI95zd77Rh72uKtUEt9XhoChRRzGqF6M6MepLjJJd66pvNaF-30Fs1abeBd8NVZxJmjOe8SOb9SkT6hgD2P-hvwfFLuzXEH7Qf7Q-AXANg6c |
| Cites_doi | 10.1007/978-981-97-5231-7_17 10.20944/preprints202407.1333.v1 10.1201/9781003442066-7 10.1016/j.bspc.2023.104889 10.1007/s12020-023-03520-6 10.3390/info15050252 10.1177/2055207620914777 10.1101/2025.03.20.644456 10.1186/s12887-024-05216-w 10.1007/978-3-031-64288-3_12 10.1371/journal.pone.0232414 10.1016/j.rineng.2025.104244 10.1007/978-3-031-67285-9_22 10.1080/0954898X.2024.2343341 10.1109/Evolution65010.2025.11044926 10.1016/j.datak.2022.102042 10.38124/ijisrt/IJISRT24JUL1400 10.2147/PPA.S108203 10.1016/j.eswa.2012.07.032 10.1016/j.bspc.2021.103456 10.1007/978-3-031-48981-5_22 10.3390/diagnostics12123215 10.11591/ijeecs.v29.i1.pp451-459 10.3390/diagnostics14020144 10.1038/s41392-023-01652-9 10.1002/int.22844 10.33096/ilkom.v16i1.1952.68-75 10.1136/heartjnl-2024-324176 10.1016/j.rineng.2025.104370 10.3390/e22121406 10.4236/jsea.2014.712093 10.1002/biof.1995 10.1007/s42979-020-00365-y 10.11113/oiji2023.11n1.242 10.1016/j.compbiomed.2024.109168 10.3389/fcvm.2024.1277123 10.1007/978-3-642-12775-5_11 10.1016/j.measen.2022.100657 10.1016/j.health.2023.100166 10.1186/s13148-022-01343-2 10.11591/ijeecs.v33.i2.pp1030-1041 10.1109/ICMSCI62561.2025.10894568 10.1016/j.procs.2015.09.132 10.1016/j.eswa.2007.06.004 10.1093/eurjpc/zwae219 10.3389/fped.2024.1371286 10.1186/s40537-025-01119-4 10.1016/j.datak.2024.102339 10.1016/j.imu.2020.100402 10.1145/3629188.3629193 10.1007/978-3-031-60935-0_10 10.1038/s41598-024-74186-x 10.1186/s44147-023-00280-y 10.1007/978-981-15-7421-4_2 10.1080/0954898X.2024.2331506 |
| ContentType | Journal Article |
| Copyright | Crown 2025 Crown 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Crown 2025 – notice: Crown 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU CNYFK DWQXO E3H F2A FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M1O P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRQQA PSYQQ Q9U ADTOC UNPAY |
| DOI | 10.1007/s10462-025-11385-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College Library & information science collection. ProQuest Central Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (Proquest) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Library Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Social Sciences ProQuest One Psychology ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student Library and Information Science Abstracts (LISA) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences Library & Information Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Library Science ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | CrossRef ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7462 |
| ExternalDocumentID | 10.1007/s10462-025-11385-6 10_1007_s10462_025_11385_6 |
| GrantInformation_xml | – fundername: Deakin University |
| GroupedDBID | .4S .86 .DC .VR 06D 0R~ 0VY 1N0 203 23N 2J2 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6J9 6NX 77I 77K 7WY 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAFWJ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AARTL AASML AATVU AAUYE AAWCG AAYIU AAYQN ABBBX ABBXA ABDBE ABDZT ABECU ABEEZ ABFSG ABFTD ABFTV ABHLI ABHQN ABIVO ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACACY ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACSTC ACULB ADHHG ADHIR ADIMF ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEFQL AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFGXO AFHIU AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BENPR C24 C6C CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EDO EIOEI ESBYG FEDTE FERAY FFXSO FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LLZTM MA- MK~ N9A NB0 NPVJJ NQJWS O93 O9G O9I O9J OAM P19 P9O PF0 PT5 QOK QOS R89 R9I RHV RNS RPX RSV S16 S1Z S27 S3B SAP SCO SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX VC2 W23 W48 WH7 WK8 YLTOR Z45 ZMTXR ~A9 ~EX AAYXX AFKRA ALSLI ARAPS AZQEC BEZIV BGLVJ CITATION CNYFK HCIFZ M0C M1O PHGZM 3V. 7SC 7XB 8AL 8AO 8FD 8FE 8FG 8FK ABUWG CCPQU DWQXO E3H F2A FRNLG GNUQQ JQ2 K7- L.- L7M L~C L~D M0N P62 PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRQQA PSYQQ Q9U -Y2 1SB 2.D 28- 2P1 2VQ 5QI AAOBN AARHV AAYTO ABJNI ABQSL ACBXY ADHKG ADTOC AEBTG AEFIE AEKMD AFEXP AFFNX AFGCZ AGGDS AGJBK AGQPQ AJBLW BBWZM BDATZ BGNMA BPHCQ CAG COF EJD FINBP FSGXE H13 HF~ ICD IHE K6V KOW LAK M4Y N2Q NDZJH NU0 O9- OVD PROAC Q2X R4E RNI ROL RZC RZE RZK S26 S28 SCJ SCLPG T16 TEORI UNPAY UZXMN VFIZW |
| ID | FETCH-LOGICAL-c1955-667e35612d6addfc07961850ab424e53c5faf49b9a3b3f34cc95f8aef1e073513 |
| IEDL.DBID | M1O |
| ISSN | 1573-7462 0269-2821 |
| IngestDate | Sun Oct 19 05:41:19 EDT 2025 Sat Oct 25 07:11:45 EDT 2025 Sat Oct 25 05:20:37 EDT 2025 Sat Oct 18 22:59:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Heart disease prediction Healthcare AI applications Explainable artificial intelligence (XAI) Data balancing techniques SHAP and LIME interpretability Machine learning (ML) and deep learning (DL) |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1955-667e35612d6addfc07961850ab424e53c5faf49b9a3b3f34cc95f8aef1e073513 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3192-1000 0000-0002-5611-0378 |
| OpenAccessLink | https://link.springer.com/10.1007/s10462-025-11385-6 |
| PQID | 3261923731 |
| PQPubID | 36790 |
| ParticipantIDs | unpaywall_primary_10_1007_s10462_025_11385_6 proquest_journals_3261923731 crossref_primary_10_1007_s10462_025_11385_6 springer_journals_10_1007_s10462_025_11385_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-17 |
| PublicationDateYYYYMMDD | 2025-10-17 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Science and Engineering Journal |
| PublicationTitle | The Artificial intelligence review |
| PublicationTitleAbbrev | Artif Intell Rev |
| PublicationYear | 2025 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | S Kayalvizhi (11385_CR29) 2023; 85 N Nursyahrina (11385_CR47) 2024; 7 CJ Ejiyi (11385_CR13) 2023; 3 11385_CR9 11385_CR35 11385_CR7 11385_CR38 RJ Suhatril (11385_CR66) 2024; 16 Q Liu (11385_CR34) 2024; 12 A Orfanoudaki (11385_CR49) 2020; 15 A Abdullahi (11385_CR1) 2024; 33 11385_CR45 Y Zhao (11385_CR75) 2023; 8 Y Jia (11385_CR24) 2024; 14 P Bing (11385_CR5) 2024; 11 M Carvalho (11385_CR6) 2025; 12 R Perumal (11385_CR54) 2020; 29 S Krishnan (11385_CR30) 2023; 11 U Musa (11385_CR41) 2022; 26 Y-S Chen (11385_CR8) 2020; 22 11385_CR25 11385_CR26 11385_CR32 I Mbanze (11385_CR37) 2025; 111 X Li (11385_CR33) 2024; 83 RH Laftah (11385_CR31) 2024; 5 11385_CR70 MA Abushariah (11385_CR2) 2014; 7 MA Talukder (11385_CR68) 2025; 25 H Kahramanli (11385_CR27) 2008; 35 A Ogunpola (11385_CR48) 2024; 14 A Almulihi (11385_CR4) 2022; 12 A Naeem (11385_CR42) 2024 MA Talukder (11385_CR69) 2025; 25 J Nahar (11385_CR43) 2013; 40 AP Jawalkar (11385_CR23) 2023; 70 11385_CR57 11385_CR14 11385_CR15 T Sharma (11385_CR59) 2017; 4 11385_CR20 11385_CR22 11385_CR67 11385_CR60 P Srinivas (11385_CR65) 2022; 73 11385_CR61 ID Mienye (11385_CR40) 2020; 20 P Gupta (11385_CR19) 2022; 29 R Narain (11385_CR44) 2016; 10 R Spencer (11385_CR64) 2020; 6 K Kanagarathinam (11385_CR28) 2022; 140 H Huang (11385_CR21) 2022; 37 WA Mahmoud (11385_CR36) 2021; 12 PK Shrivastava (11385_CR62) 2023; 25 11385_CR46 D Shah (11385_CR58) 2020; 1 A Vinora (11385_CR71) 2025 11385_CR53 11385_CR11 11385_CR12 11385_CR56 R El-Bialy (11385_CR16) 2015; 65 F Mesquita (11385_CR39) 2024; 153 11385_CR50 11385_CR51 11385_CR52 F Zhu (11385_CR76) 2024; 31 X Zhang (11385_CR72) 2022; 14 Z Zhang (11385_CR73) 2024; 24 |
| References_xml | – ident: 11385_CR56 doi: 10.1007/978-981-97-5231-7_17 – volume: 4 start-page: 17 issue: 3 year: 2017 ident: 11385_CR59 publication-title: Int J Recent Res Asp – ident: 11385_CR60 doi: 10.20944/preprints202407.1333.v1 – start-page: 104 volume-title: Edge AI for industry 5.0 and healthcare 5.0 applications year: 2025 ident: 11385_CR71 doi: 10.1201/9781003442066-7 – volume: 85 year: 2023 ident: 11385_CR29 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.104889 – volume: 83 start-page: 178 issue: 1 year: 2024 ident: 11385_CR33 publication-title: Endocrine doi: 10.1007/s12020-023-03520-6 – ident: 11385_CR26 doi: 10.3390/info15050252 – volume: 7 start-page: 135 issue: 2 year: 2024 ident: 11385_CR47 publication-title: J Sist Informasi Ilmu Komput – volume: 6 start-page: 205520762091477 year: 2020 ident: 11385_CR64 publication-title: Digital Health doi: 10.1177/2055207620914777 – ident: 11385_CR46 doi: 10.1101/2025.03.20.644456 – volume: 24 start-page: 729 issue: 1 year: 2024 ident: 11385_CR73 publication-title: BMC Pediatr doi: 10.1186/s12887-024-05216-w – ident: 11385_CR25 – start-page: 283 volume-title: Integrated science for sustainable development goal 3: empowering global wellness initiatives year: 2024 ident: 11385_CR42 doi: 10.1007/978-3-031-64288-3_12 – volume: 15 start-page: 0232414 issue: 5 year: 2020 ident: 11385_CR49 publication-title: PLoS ONE doi: 10.1371/journal.pone.0232414 – volume: 25 year: 2025 ident: 11385_CR68 publication-title: Results Eng doi: 10.1016/j.rineng.2025.104244 – ident: 11385_CR70 doi: 10.1007/978-3-031-67285-9_22 – ident: 11385_CR11 doi: 10.1080/0954898X.2024.2343341 – ident: 11385_CR57 doi: 10.1109/Evolution65010.2025.11044926 – volume: 140 year: 2022 ident: 11385_CR28 publication-title: Data Knowl Eng doi: 10.1016/j.datak.2022.102042 – volume: 12 start-page: 4864 issue: 14 year: 2021 ident: 11385_CR36 publication-title: Turk J Comput Math Educ – ident: 11385_CR67 doi: 10.38124/ijisrt/IJISRT24JUL1400 – volume: 10 start-page: 1259 year: 2016 ident: 11385_CR44 publication-title: Patient Prefer Adherence doi: 10.2147/PPA.S108203 – ident: 11385_CR51 – volume: 40 start-page: 96 issue: 1 year: 2013 ident: 11385_CR43 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.07.032 – volume: 73 year: 2022 ident: 11385_CR65 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.103456 – ident: 11385_CR32 doi: 10.1007/978-3-031-48981-5_22 – volume: 12 start-page: 3215 issue: 12 year: 2022 ident: 11385_CR4 publication-title: Diagnostics doi: 10.3390/diagnostics12123215 – volume: 29 start-page: 451 issue: 1 year: 2022 ident: 11385_CR19 publication-title: Indonesian J Electr Eng Comput Sci doi: 10.11591/ijeecs.v29.i1.pp451-459 – volume: 14 start-page: 144 issue: 2 year: 2024 ident: 11385_CR48 publication-title: Diagnostics doi: 10.3390/diagnostics14020144 – ident: 11385_CR45 – volume: 8 start-page: 431 issue: 1 year: 2023 ident: 11385_CR75 publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-023-01652-9 – volume: 37 start-page: 6283 issue: 9 year: 2022 ident: 11385_CR21 publication-title: Int J Intell Syst doi: 10.1002/int.22844 – volume: 5 start-page: 1412 issue: 5 year: 2024 ident: 11385_CR31 publication-title: J Robot Control (JRC) – volume: 16 start-page: 68 issue: 1 year: 2024 ident: 11385_CR66 publication-title: ILKOM J Ilmiah doi: 10.33096/ilkom.v16i1.1952.68-75 – ident: 11385_CR52 – volume: 111 start-page: 341 issue: 8 year: 2025 ident: 11385_CR37 publication-title: Heart doi: 10.1136/heartjnl-2024-324176 – volume: 25 year: 2025 ident: 11385_CR69 publication-title: Results Eng doi: 10.1016/j.rineng.2025.104370 – volume: 22 start-page: 1406 issue: 12 year: 2020 ident: 11385_CR8 publication-title: Entropy doi: 10.3390/e22121406 – volume: 7 start-page: 1055 issue: 12 year: 2014 ident: 11385_CR2 publication-title: J Softw Eng Appl doi: 10.4236/jsea.2014.712093 – ident: 11385_CR14 doi: 10.1002/biof.1995 – volume: 1 start-page: 345 issue: 6 year: 2020 ident: 11385_CR58 publication-title: SN Comput Sci doi: 10.1007/s42979-020-00365-y – volume: 11 start-page: 41 issue: 1 year: 2023 ident: 11385_CR30 publication-title: Open Int J Informatics doi: 10.11113/oiji2023.11n1.242 – ident: 11385_CR61 – ident: 11385_CR15 doi: 10.1016/j.compbiomed.2024.109168 – volume: 11 start-page: 1277123 year: 2024 ident: 11385_CR5 publication-title: Front Cardiovasc Med doi: 10.3389/fcvm.2024.1277123 – ident: 11385_CR35 doi: 10.1007/978-3-642-12775-5_11 – volume: 25 year: 2023 ident: 11385_CR62 publication-title: Measur Sensors doi: 10.1016/j.measen.2022.100657 – volume: 3 year: 2023 ident: 11385_CR13 publication-title: Healthc Analyt doi: 10.1016/j.health.2023.100166 – volume: 14 start-page: 122 issue: 1 year: 2022 ident: 11385_CR72 publication-title: Clin Epigenetics doi: 10.1186/s13148-022-01343-2 – volume: 33 start-page: 1030 issue: 2 year: 2024 ident: 11385_CR1 publication-title: Indonesian J Electr Eng Comput Sci doi: 10.11591/ijeecs.v33.i2.pp1030-1041 – ident: 11385_CR38 doi: 10.1109/ICMSCI62561.2025.10894568 – volume: 65 start-page: 459 year: 2015 ident: 11385_CR16 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2015.09.132 – volume: 35 start-page: 82 issue: 1–2 year: 2008 ident: 11385_CR27 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2007.06.004 – volume: 31 start-page: 1724 issue: 14 year: 2024 ident: 11385_CR76 publication-title: Eur J Prev Cardiol doi: 10.1093/eurjpc/zwae219 – volume: 12 start-page: 1371286 year: 2024 ident: 11385_CR34 publication-title: Front Pediatr doi: 10.3389/fped.2024.1371286 – volume: 12 start-page: 71 issue: 1 year: 2025 ident: 11385_CR6 publication-title: J Big Data doi: 10.1186/s40537-025-01119-4 – volume: 153 year: 2024 ident: 11385_CR39 publication-title: Data Knowl Eng doi: 10.1016/j.datak.2024.102339 – volume: 20 year: 2020 ident: 11385_CR40 publication-title: Informatics Med Unlocked doi: 10.1016/j.imu.2020.100402 – volume: 26 start-page: 1093 issue: 6 year: 2022 ident: 11385_CR41 publication-title: J Appl Sci Environ Manag – ident: 11385_CR53 – ident: 11385_CR50 doi: 10.1145/3629188.3629193 – volume: 29 start-page: 4225 issue: 06 year: 2020 ident: 11385_CR54 publication-title: Int J Adv Sci Technol – ident: 11385_CR9 doi: 10.1007/978-3-031-60935-0_10 – volume: 14 start-page: 22786 issue: 1 year: 2024 ident: 11385_CR24 publication-title: Sci Rep doi: 10.1038/s41598-024-74186-x – volume: 70 start-page: 122 issue: 1 year: 2023 ident: 11385_CR23 publication-title: J Eng Appl Sci doi: 10.1186/s44147-023-00280-y – ident: 11385_CR7 – ident: 11385_CR20 doi: 10.1007/978-981-15-7421-4_2 – ident: 11385_CR22 – ident: 11385_CR12 doi: 10.1080/0954898X.2024.2331506 |
| SSID | ssj0005243 |
| Score | 2.4130893 |
| Snippet | Cardiovascular disease (CVD) is the leading global cause of death, highlighting the urgent need for early, accurate, and interpretable diagnostic tools.... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 385 |
| SubjectTerms | Accuracy Algorithms Artificial Intelligence Blood pressure Business metrics Cardiovascular disease Computer Science Datasets Decision making Decision support systems Deep learning Electronic health records Explainable artificial intelligence Feature selection Heart Heart diseases Machine learning Medical prognosis Missing data Mortality Optimization techniques Performance evaluation Prediction models Rank tests Real time Risk assessment Risk factors |
| SummonAdditionalLinks | – databaseName: SpringerLINK dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oPKgHf4vTKTl4c4U2P9rV25iOKehpg91K2uSBMGpxHep_b9Km2wQRPZem9MtL8oX3vfcBXDOpKdqcYZxSc0Gxne56qaJeJlLqZ0L5WIlonp7D0YQ_TsXUFYXNG7V7k5Ksduq1YjceUs_arwYBs5L5Tdgy_INaw4aBrXFYCjs4c-UxP7_3_Qha8cplKnQXthd5IT_f5Wy2dtoMD2DP0UTSr-f1EDZ0fgT7jQUDcSvyGMbT_oM3urslMif6o5i5WihiA6LuDUFe1ppuEmy0WMSQVWLdrEvicjRE6bLSZeUnMBnejwcjzxkleFkQC_NHYaSZtblUodmuMPMj6-MifJlyyrVgmUCJPE5jyVKGjGdZLLAnNQbarHARsFNo5a-5PgOCqBS1HADR51LqmErD6VSPawwlVdiGmwa7pKj7YSSrzscW6cQgnVRIJ2EbOg28iVsb84TVl7aIBW3oNpCvHv82Wnc5LX_4-Pn_Rr-AHVoFie8FUQda5dtCXxrCUaZXVXx9AZrMzFM priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbGdgAOjKcYDJQDN9atTZp25TYx0EBi4rBJ41QlTSIhplJBJx6_nqSPbSCEQJzTpo3tOl9q-zPACWESKxMzDDjWBxTDdNflAlsR5diOqLBVlkRzM_QGY_d6QicV6Je1MFm2exmSzGsaDEtTnHYSoTpLhW-uhy3TitVxiEmfb-vhFah5VCPyKtTGw9veXf57JbD0qSKnTfWJ5ev7itqZ7yf6vD8tQOc8TroOq7M4YW8vbDpd2oou6yDLReQZKA_tWcrb0fsXfsf_rnITNgqsinq5cW1BRcbbUC_7QKDCLezAaNK7sgb9M8RiJF-TaVGQhYxV5gQV6H6J-ROpMiEMacSMTEvtFBWBIiRkmiWHxbswvrwYnQ-soluDFTkB1S_n-ZKYXpvC0z5TRbZvmslQm3EXu5KSiCqm3IAHjHCiiBtFAVVdJpUjtZuhDtmDavwYy31ASgmBDRBRynYZkwFmGliKriuVx7BQDTgtdRQmOSlHuKBfNkILtdDCTGih14Bmqcaw-ECfQ5KfHH3iNKBVamIx_NNsrbn6f_Hwg79dfghrONO3bTl-E6rp00weadST8uPCqD8AyNX24g priority: 102 providerName: Unpaywall |
| Title | XAI-HD: an explainable artificial intelligence framework for heart disease detection |
| URI | https://link.springer.com/article/10.1007/s10462-025-11385-6 https://www.proquest.com/docview/3261923731 https://link.springer.com/content/pdf/10.1007/s10462-025-11385-6.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 58 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7462 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Library Science Database customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: M1O dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/libraryscience providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: AAJSJ dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: C6C dateStart: 20240101 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: C24 dateStart: 20240101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB7R9gAcKK-KQIn2wI26eF9OzAWZNGl4JFTQSOnJWu9Dqhq5gTri8evZsddN4FAhLruHlbz2zHh2dufb-QBecGWZw5xhWjC_QcFKd_3CsEjLgsVamtjVIJrJNBnPxPu5nIcDt6sAq2x9Yu2ozaXGM_JXvAn1e5y-WX6NkDUKs6uBQmMLdjD5iAwGE_ppA-LRoOZYkkZ-a0HDpZlwdU4kLEIyV0o5AvD_XJjW0eZ1gvQu3F6VS_Xzu1osNtag0S7k7ds30JOLw1VVHOpffxV2_P_Puw_3QnhKssaeHsAtWz6E3Zb6gQRP8AhO59m7aHz0mqiS2B_LRbiDRdAQm5oU5Hyj2CdxLQaM-CCZIIt2RUJuiBhb1Xiw8jHMRsPTwTgKBA2Rpqn0Mkt6liO9pkm8m3Q67iF_jIxVIZiwkmvplBNpkSpecMeF1ql0fWUdtd6zSMr3YLu8LO0TIM4ZwzD2cC4WStmUKR9Lmr6wLlHMuA68bLWTL5s6HPm64jLqMve6zGtd5kkH9lsp5-GfvMrXIu7AQavU9fBNTzu4Vvw_TP705smfwR1Wm10c0d4-bFffVva5D2yqogtb_dFxF3ayo8nHL9gfn30Y-v7tcHry2Y8OmMA2GXRrO_ftjGV-fDY9yc5-A_sd_kw |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JSwMxFH64HNSDu1itmoOeNDiTZdoRitSN1qWItNDbmJkkIJSxakX75_xtJjMZWy_ipeeBBL68vHxv3vIB7FOhiLY5wzAmJkCxk-6qsSQ44THxEi49nRXR3LWCRoddd3l3Cr6KXhhbVln4xMxRy-fE_iM_pjnVr1D_tP-CrWqUza4WEhrCSSvIWjZizDV23Kjhhwnh3mrNC3PeB4RcXbbPG9ipDODEDznHQVBR1GpEysDcdZ14FSuCwj0RM8IUpwnXQrMwDgWNqaYsSUKuq0JpX5nrwX1q1p2GWUZZaIK_2bPL1v3DWJFJXrdHghCb4MZ3bTuueY8FBFs5Wd-ntgXg99M44rs_KdoFmHtP-2L4IXq9sVfwahkWHX1F9dzeVmBKpauwVEhDIOcp1qDdrTdx4-IEiRSpz37P9Wgha6j5zAr0NDYMFOmiRgwZEo2syvYAudwRkmqQ1Yul69CZCLQbMJM-p2oTkNZSEstNtPaYECokwnBNWWVKB4JIXYLDAruon8_piEYTmS3SkUE6ypCOghKUC3gjd2ffopGFleCogHz0-a_Vjn6O5R-bb_29-R7MNdp3t9Fts3WzDfMkMxAP-5UyzAxe39WOIUGDeNdZGoLHSRv3N69vFL8 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB1RKrX0AKUFdQulPsCpeIntONkgoQp1We2WFnoAaW_B8YdUdRW2JStKf1r_Cn8GO7HZpQfEhUPPkRzFfjOeybyZB7DJhKbG1QyzgtoExU266xSKYskLGkmuIlOTaL4eJf3T-POQD-fgb-iFcbTK4BNrR63OpftHvsOaUD9lZMd4WsS3bu_j-Cd2ClKu0hrkNBqIHOqrS5u-XewNuvastyjtHZx86mOvMIAlyTjHSZJq5vQhVWLt3MgodQIoPBJFTGPNmeRGmDgrMsEKZlgsZcZNR2hDtDUNTphd9wk8TV0a4WiD5HiGXtIw9miSYZvWEN-w49v24oRiJyRLCHPk_7uX4jTSvS3OvoDnk3Isri7FaDRz__WW4DrsXEN7-dGeVEVb_vlnqOT_ubUvYdGH5Wi_saNlmNPlK1gKkhfIe8DXcDLcH-B-dxeJEunf45HvPUPOAJtZHOj7zJBTZAL3DdnkADn18Ar5mhhSuqp5cOUKnD7Kt63CfHle6jeAjFGKupjLmCgWQmdU2BhadWJtEkGVacGHgIx83MwfyaeTph2OcoujvMZRnrRgPZxw7n3RRT493hZsB0BNH9-32vYt6B7w8rf3v_w9PLOoyr8Mjg7XYIHW6I8wSddhvvo10e9sbFcVG7URITh7bGjdAMwGWbs |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbGdgAOjKcYDJQDN9atTZp25TYx0EBi4rBJ41QlTSIhplJBJx6_nqSPbSCEQJzTpo3tOl9q-zPACWESKxMzDDjWBxTDdNflAlsR5diOqLBVlkRzM_QGY_d6QicV6Je1MFm2exmSzGsaDEtTnHYSoTpLhW-uhy3TitVxiEmfb-vhFah5VCPyKtTGw9veXf57JbD0qSKnTfWJ5ev7itqZ7yf6vD8tQOc8TroOq7M4YW8vbDpd2oou6yDLReQZKA_tWcrb0fsXfsf_rnITNgqsinq5cW1BRcbbUC_7QKDCLezAaNK7sgb9M8RiJF-TaVGQhYxV5gQV6H6J-ROpMiEMacSMTEvtFBWBIiRkmiWHxbswvrwYnQ-soluDFTkB1S_n-ZKYXpvC0z5TRbZvmslQm3EXu5KSiCqm3IAHjHCiiBtFAVVdJpUjtZuhDtmDavwYy31ASgmBDRBRynYZkwFmGliKriuVx7BQDTgtdRQmOSlHuKBfNkILtdDCTGih14Bmqcaw-ECfQ5KfHH3iNKBVamIx_NNsrbn6f_Hwg79dfghrONO3bTl-E6rp00weadST8uPCqD8AyNX24g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=XAI-HD%3A+an+explainable+artificial+intelligence+framework+for+heart+disease+detection&rft.jtitle=The+Artificial+intelligence+review&rft.au=Talukder%2C+Md.+Alamin&rft.au=Talaat%2C+Amira+Samy&rft.au=Kazi%2C+Mohsin&rft.au=Khraisat%2C+Ansam&rft.date=2025-10-17&rft.pub=Springer+Nature+B.V&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=58&rft.issue=12&rft.spage=385&rft_id=info:doi/10.1007%2Fs10462-025-11385-6&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7462&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7462&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7462&client=summon |