XAI-HD: an explainable artificial intelligence framework for heart disease detection

Cardiovascular disease (CVD) is the leading global cause of death, highlighting the urgent need for early, accurate, and interpretable diagnostic tools. However, many AI-based heart disease prediction models lack transparency, hindering their acceptance in clinical settings. This study proposes XAI-...

Full description

Saved in:
Bibliographic Details
Published inThe Artificial intelligence review Vol. 58; no. 12; p. 385
Main Authors Talukder, Md. Alamin, Talaat, Amira Samy, Kazi, Mohsin, Khraisat, Ansam
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 17.10.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1573-7462
0269-2821
1573-7462
DOI10.1007/s10462-025-11385-6

Cover

More Information
Summary:Cardiovascular disease (CVD) is the leading global cause of death, highlighting the urgent need for early, accurate, and interpretable diagnostic tools. However, many AI-based heart disease prediction models lack transparency, hindering their acceptance in clinical settings. This study proposes XAI-HD, a hybrid framework integrating machine learning (ML), deep learning (DL), and explainable AI (XAI) techniques for heart disease detection. The framework systematically addresses key challenges, including class imbalance, missing data, and feature inconsistency, through advanced preprocessing and class-balancing methods such as OSS, NCR, SMOTEN, ADASYN, SMOTETomek, and SMOTEENN. Comparative performance evaluations across multiple datasets (CHD, FHD, SHD) demonstrate that XAI-HD reduces classification error rates by 20–25% compared to traditional ML-based models, achieving superior accuracy, precision, recall, and F1-score. Additionally, SHAP and LIME-based feature importance analysis enhances model interpretability, fostering trust among medical professionals. The proposed framework holds significant real-world applicability, including seamless integration into hospital decision support systems, electronic health records (EHR), and real-time cardiac risk assessment platforms. Unlike conventional AI-driven cardiovascular risk prediction models, XAI-HD offers a more balanced, interpretable, and computationally efficient solution, ensuring both predictive accuracy and practical feasibility in clinical environments. Statistical validation using Wilcoxon signed-rank tests confirms the performance gains, and complexity analysis shows the framework is scalable for large-scale deployment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1573-7462
0269-2821
1573-7462
DOI:10.1007/s10462-025-11385-6