Distribution of the Joint Survival Function of an Archimedean Copula
Suppose a random vector U 1 , … , U d with values in the unit cube has a joint survival function: C * u 1 , … , u d = ℙ U 1 > u 1 , … , U d > u d , given by an Archimedean copula C u 1 , … , u d = φ − 1 φ u 1 + … + φ u d , with generator φ : 0 , 1 → 0 , ∞ , a smooth decreasing convex function...
Saved in:
| Published in | Bulletin - Calcutta Statistical Association Vol. 76; no. 2; pp. 193 - 211 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New Delhi, India
SAGE Publications
01.11.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0008-0683 2456-6462 2456-6462 |
| DOI | 10.1177/00080683241246438 |
Cover
| Summary: | Suppose a random vector
U
1
,
…
,
U
d
with values in the unit cube has a joint survival function:
C
*
u
1
,
…
,
u
d
=
ℙ
U
1
>
u
1
,
…
,
U
d
>
u
d
,
given by an Archimedean copula
C
u
1
,
…
,
u
d
=
φ
−
1
φ
u
1
+
…
+
φ
u
d
,
with generator
φ
:
0
,
1
→
0
,
∞
, a smooth decreasing convex function such that
φ
1
=
0
. In this article, we provide a formula for the distribution of
Z
=
C
*
U
1
,
…
,
U
d
=
ℙ
U
1
'
>
U
1
,
…
,
U
d
'
>
U
d
∣
U
1
,
…
,
U
d
,
where
U
1
'
,
…
,
U
d
'
is an independent copy of
U
1
,
…
,
U
d
and a method to simulate values from the distribution of Z in the bivariate case, that is, when d = 2. The case d > 2 does not seem to be tractable. As an application, we show how our result can be used to compute the limiting covariance of the empirical Kendall process corresponding to
C
*
U
1
,
U
2
.
AMS Subject Classification: 62H05 |
|---|---|
| ISSN: | 0008-0683 2456-6462 2456-6462 |
| DOI: | 10.1177/00080683241246438 |