Ọdịgbo Metaheuristic Optimization Algorithm for Computation of Real-Parameters and Engineering Design Optimization

This paper proposes a new population-based global optimization algorithm, Ọdịgbo Metaheuristic Optimization Algorithm–ỌMOA, for solving complex bounded-constraint/single objective real-parameter problems found in most engineering and scientific applications. It’s inspired by the human socio-cultural...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced computer science & applications Vol. 14; no. 1
Main Authors V, Ikpo C, K, Akowuah E, J, Kponyo J, O, Boateng K
Format Journal Article
LanguageEnglish
Published West Yorkshire Science and Information (SAI) Organization Limited 2023
Subjects
Online AccessGet full text
ISSN2158-107X
2156-5570
2156-5570
DOI10.14569/IJACSA.2023.0140130

Cover

More Information
Summary:This paper proposes a new population-based global optimization algorithm, Ọdịgbo Metaheuristic Optimization Algorithm–ỌMOA, for solving complex bounded-constraint/single objective real-parameter problems found in most engineering and scientific applications. It’s inspired by the human socio-cultural informal discipleship learning pattern inherent in the behavior of the Ndịgbo peoples; the subject – primary (Nwa-ahịa), in mercantile cycle grows to a secondary (Mazi) owing to the intuitive stratagem (dialect - Ịgba) embedded in an aged-long cultural model “Ịgba-ọsọ-ahịa” (meaning, strategic marketing skills, and practice). The model mimics the search routine for satisfying a customer’s need in the market, built into exploration and exploitation applied in the mathematical model. About 30 complex classical unconstrained functions are tested, comparing results with that of five similar state-of-the-art algorithms. Also, 29 CEC-2017 single objective real constraint benchmark serious dimensional problems were simulated and compared against the winners of that competition. Validation includes statistical (t-test, p-value) comparison and for 50 Dimension constraint problems as ỌMOA demonstrated superior performance. TCS (9.18%), WBP (6.3%), PVDP (601%), RGP (319%), RBP (760%), GTCD (202%), HIMMELBLAU (4%), and CDP (88.12%) are the improvements made on 8 CEC-2020 engineering real design problems against the former best performances; OMOA is simple to implement, replicate and applicable across domains. Also, some new, improved optimum was obtained in Shubert and Schaffer 4 function compared to the global optimums.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2158-107X
2156-5570
2156-5570
DOI:10.14569/IJACSA.2023.0140130