Doping Induced Gap Anisotropy in Iron-Based Superconductors: a Point-Contact Andreev Reflection Study of BaFe2-xNixAs2 Single Crystals
We report a systematic investigation on c-axis point-contact Andreev reflection (PCAR) in BaFe2-xNixAs2 superconducting single crystals from underdoped to overdoped regions (0.075≤ x ≤0.15). At low temperatures, an in-gap sharp peak at low-bias voltage is observed in PCAR for overdoped samples, in c...
Saved in:
Published in | 中国物理快报:英文版 no. 7; pp. 179 - 182 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.07.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0256-307X 1741-3540 |
DOI | 10.1088/0256-307X/32/7/077401 |
Cover
Summary: | We report a systematic investigation on c-axis point-contact Andreev reflection (PCAR) in BaFe2-xNixAs2 superconducting single crystals from underdoped to overdoped regions (0.075≤ x ≤0.15). At low temperatures, an in-gap sharp peak at low-bias voltage is observed in PCAR for overdoped samples, in contrast to the case of underdoped junctions, in which an in-gap plateau is observed. The variety of the conductance spectra with doping can be well described by using a generalized Blonder-Tinkham-Klapwijk formalism with an angle-dependent gap. This gap shows a clear crossover from a nodeless in the underdoped side to a nodal feature in the overdoped region. This result provides evidence of the doping-induced evolution of the superconducting order parameter when the inter-pocket and intra-pocket scattering are tuned through doping, as expected in the s± scenario. |
---|---|
Bibliography: | We report a systematic investigation on c-axis point-contact Andreev reflection (PCAR) in BaFe2-xNixAs2 superconducting single crystals from underdoped to overdoped regions (0.075≤ x ≤0.15). At low temperatures, an in-gap sharp peak at low-bias voltage is observed in PCAR for overdoped samples, in contrast to the case of underdoped junctions, in which an in-gap plateau is observed. The variety of the conductance spectra with doping can be well described by using a generalized Blonder-Tinkham-Klapwijk formalism with an angle-dependent gap. This gap shows a clear crossover from a nodeless in the underdoped side to a nodal feature in the overdoped region. This result provides evidence of the doping-induced evolution of the superconducting order parameter when the inter-pocket and intra-pocket scattering are tuned through doping, as expected in the s± scenario. 11-1959/O4 ZHU Jun, WANG Zhao-Sheng, WANG Zhen-Yu, HOU Xing-Yuan, LUO Hui-Qian, LU Xing-Ye, LI Chun-Hong, SHAN Lei, WEN Hai-Hu, REN Cong( 1.NationM Laboratory for Superconductivity, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190 2 Department of Physics, Nanjing University, Nanjing 210093) |
ISSN: | 0256-307X 1741-3540 |
DOI: | 10.1088/0256-307X/32/7/077401 |