GGA+U study of the electronic energy bands and state density of the wurtzite In1-xGaxN

The electronic band structures, densities of states (DOSs), and projected densities of states (PDOSs) of the wurtzite In1-xGaxN with x=0, 0.0625, 0.125 are studied using the generalized-gradient approximation (GGA) and GGA+U in density functional theory. Our calculations suggest that in the case of...

Full description

Saved in:
Bibliographic Details
Published in中国物理B:英文版 no. 12; pp. 58 - 64
Main Author 王伟华 赵国忠 粱希侠
Format Journal Article
LanguageEnglish
Published 01.12.2013
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/22/12/120205

Cover

More Information
Summary:The electronic band structures, densities of states (DOSs), and projected densities of states (PDOSs) of the wurtzite In1-xGaxN with x=0, 0.0625, 0.125 are studied using the generalized-gradient approximation (GGA) and GGA+U in density functional theory. Our calculations suggest that in the case of wurtzite InN it is important to apply an on-site Hubbard correction to both the d states of indium and the p states of nitrogen in order to recover the correct energy level symmetry and obtain a reliable description of the InN band structure. The method is used to study the electronic properties of the wurtzite In1-xGaxN. The conduction band minimum (CBM) energy increases, while the valence band maximum (VBM) energy decreases with the increase of the gallium concentration. The effect leads to broadening the band gap (BG) and the valence band width (VBW). Furthermore, the compressive strain in the crystal can cause the BG and the VBW to increase with the increase of gallium concentrations.
Bibliography:Wang Wei-Huaa, Zhao Guo-Zhonga b, Liang Xi-Xiaa(a Department of Physics, Inner Mongolia University, Hohhot 010021, China;b Department of Physics, Capital Normal University, Beijing 100048, China )
The electronic band structures, densities of states (DOSs), and projected densities of states (PDOSs) of the wurtzite In1-xGaxN with x=0, 0.0625, 0.125 are studied using the generalized-gradient approximation (GGA) and GGA+U in density functional theory. Our calculations suggest that in the case of wurtzite InN it is important to apply an on-site Hubbard correction to both the d states of indium and the p states of nitrogen in order to recover the correct energy level symmetry and obtain a reliable description of the InN band structure. The method is used to study the electronic properties of the wurtzite In1-xGaxN. The conduction band minimum (CBM) energy increases, while the valence band maximum (VBM) energy decreases with the increase of the gallium concentration. The effect leads to broadening the band gap (BG) and the valence band width (VBW). Furthermore, the compressive strain in the crystal can cause the BG and the VBW to increase with the increase of gallium concentrations.
11-5639/O4
GGA+U electronic structures projected density of states In1-xGaxN
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/22/12/120205