Evolution of Hydrodynamic Field, Oil-Gas Migration and Accumulation in Songliao Basin, China
The oil-gas migration and accumulation in the Songliao Basin were analyzed in the view of fluid dynamics by the authors. The key point of fluid dynamics is hydrodynamics. Oil-gas migration and accumulation are related closely with formation and evolution of hydrodynamic field. Based on abundant data...
Saved in:
Published in | Chinese journal of oceanology and limnology Vol. 22; no. 2; pp. 105 - 123 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Nature B.V
01.06.2004
Department of Ocean Sciences and Engineering, Zhejiang University, Hangzhou 310028, China%Oilfield Administration, SINOPEC, Beijing 100029, China%Oilfield Administration Bureau of Daqing, Heilongjiang 163712, China |
Subjects | |
Online Access | Get full text |
ISSN | 0254-4059 2096-5508 1993-5005 2523-3521 |
DOI | 10.1007/BF02842581 |
Cover
Summary: | The oil-gas migration and accumulation in the Songliao Basin were analyzed in the view of fluid dynamics by the authors. The key point of fluid dynamics is hydrodynamics. Oil-gas migration and accumulation are related closely with formation and evolution of hydrodynamic field. Based on abundant data, initial formation pressure and other parameters, such as water head were studied. They can be used to understand the present distribution of hydrodynamic field and its hydrochemical features. Generally, the hydrodynamic field in the basin is obviously asymmetrical. In its north and east part, there are the areas of centripetal flow caused by topographic relief when meteoric water permeate downwards. Its south part is an evaporation-concentration area. The central depression is an area of centrifugal flow driven by sediment compaction and its cross-formational flow area. Only at the basin margin and in the local uplifted and denudated area are the meteoric water permeating downwards areas. The centrifugal flow driven by sediment compaction is the main dynamic factor that induces oil-gas migration and accumulation and its formation period corresponding to the main stage of oil-gas migration and accumulation. Moreover, the evolution of hydrodynamic field has the cyclic property, which results in phased oil-gas migration by stages, and further dominates the terraced annular oil and gas distribution, concentric with their corresponding sags. |
---|---|
Bibliography: | TE122.12 37-1150/P SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0254-4059 2096-5508 1993-5005 2523-3521 |
DOI: | 10.1007/BF02842581 |