Design of robust FOPI-FOPD controller for maglev system using particle swarm optimization

Magnetic Levitation System (MLS) is one of the benchmark laboratories models for designing and testing feedback control systems in the presence of the parametric uncertainties and disturbances effect. Therefore, the MLS can be regarded as a tool to study and verify a certain robust controller design...

Full description

Saved in:
Bibliographic Details
Published inEngineering and Technology Journal Vol. 39; no. 4A; pp. 653 - 667
Main Authors Yusif, Salwan Y., Muhammd, Muhammad J.
Format Journal Article
LanguageEnglish
Published Baghdad, Iraq University of Technology 25.04.2021
Unviversity of Technology- Iraq
Subjects
Online AccessGet full text
ISSN1681-6900
2412-0758
2412-0758
DOI10.30684/etj.v39i4A.1956

Cover

More Information
Summary:Magnetic Levitation System (MLS) is one of the benchmark laboratories models for designing and testing feedback control systems in the presence of the parametric uncertainties and disturbances effect. Therefore, the MLS can be regarded as a tool to study and verify a certain robust controller design. In this paper, two types of powerful control schemes are presented to control the MLS. The first controller is a robust PI-PD controller, while the other is a robust fractional order FOPI-FOPD controller which provides two extra degrees of freedom to the system. In both controller design procedures, the Particle Swarm Optimization (PSO) algorithm is used to find the best values of controller parameters subject to the time-domain objective function and H∞ constraints. All modeling processes including parameterization, optimization, and validation of the controllers are performed using MATLAB. The simulation results show that the MLS with robust FOPI-FOPD is faster and more stable than the MLS with robust classical PI-PD. Also, the proposed FOPI-FOPD controller gives far superior results than the PI-PD controller for disturbance is one of the benchmark laboratories models for designing and testing feedback control systems in the presence of the parametric uncertainties and disturbances effect. Therefore, the MLS can be regarded as a tool to study and verify a certain robust controller design. In this paper, two types of powerful control schemes are presented to control the MLS. The first controller is a robust PI-PD controller, while the other is a robust fractional order FOPI-FOPD controller which provides two extra degrees of freedom to the system. In both controller design procedures, the Particle Swarm Optimization (PSO) algorithm is used to find the best values of controller parameters subject to the time-domain objective function and H∞ constraints. All modeling processes including parameterization, optimization, and validation of the controllers are performed using MATLAB. The simulation results show that the MLS with robust FOPI-FOPD is faster and more stable than the MLS with robust classical PI-PD. Also, the proposed FOPI-FOPD controller gives far superior results than the PI-PD controller for disturbance rejection.
ISSN:1681-6900
2412-0758
2412-0758
DOI:10.30684/etj.v39i4A.1956