Off-shell $${\mathcal {N}}=(1,0)$$ linear multiplets in six dimensions

We provide a tensor calculus for n -number of $${\mathcal {N}}= (1,0)$$ N = ( 1 , 0 ) linear multiplets in six dimensions. The coupling of linear multiplets is encoded in a function $${\mathcal {F}}_{IJ}$$ F IJ that is subject to certain constraints. We provide various rigid and local supersymmetric...

Full description

Saved in:
Bibliographic Details
Published inThe European physical journal. C, Particles and fields Vol. 80; no. 12
Main Authors Atli, Ugur, Guleryuz, Omer, Ozkan, Mehmet
Format Journal Article
LanguageEnglish
Published Springer 01.12.2020
Subjects
Online AccessGet full text
ISSN1434-6044
1434-6052
1434-6052
DOI10.1140/epjc/s10052-020-08773-3

Cover

More Information
Summary:We provide a tensor calculus for n -number of $${\mathcal {N}}= (1,0)$$ N = ( 1 , 0 ) linear multiplets in six dimensions. The coupling of linear multiplets is encoded in a function $${\mathcal {F}}_{IJ}$$ F IJ that is subject to certain constraints. We provide various rigid and local supersymmetric models depending on the choice of the function $${\mathcal {F}}_{IJ}$$ F IJ and provide an interesting off-diagonal superinvariant, which leads to an $$R^2$$ R 2 supergravity upon elimination of auxiliary fields.
ISSN:1434-6044
1434-6052
1434-6052
DOI:10.1140/epjc/s10052-020-08773-3