Raw Anode Volume Density Prediction Algorithm Based on the Genetic Algorithm
In the process of aluminum electrolytic anode production, raw anode volume density is an important indicator of anode quality, which is of great significance to ensure the quality of raw anode volume density through raw anode production control parameters and the ratio of raw material. Considering t...
Saved in:
| Published in | SN computer science Vol. 3; no. 5; p. 354 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Singapore
Springer Nature Singapore
30.06.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2661-8907 2662-995X 2661-8907 |
| DOI | 10.1007/s42979-022-01248-0 |
Cover
| Abstract | In the process of aluminum electrolytic anode production, raw anode volume density is an important indicator of anode quality, which is of great significance to ensure the quality of raw anode volume density through raw anode production control parameters and the ratio of raw material. Considering the nonlinear characteristics of the raw anode production process and combining the advantages of the neural network in the nonlinear prediction problem, deep neural networks are used to model the raw anode volume density. For the uncertainty of neural network model structure, a competitive evolutionary adaptive genetic algorithm is proposed to determine the network model structure. The algorithm selects well-performing individuals through competitive fitness values to form progeny populations. During the process of genetic variation, the variation probability is adaptive calculated from the fitness values of the parent and the current number of population iterations to converge the optimal results. Experimental results show that in terms of production data, the optimization ability of the neural network model structure is significantly improved compared with other algorithms, with the root mean square error of the prediction value of the raw anode volume density is 0.005, which is smaller error than other methods. |
|---|---|
| AbstractList | In the process of aluminum electrolytic anode production, raw anode volume density is an important indicator of anode quality, which is of great significance to ensure the quality of raw anode volume density through raw anode production control parameters and the ratio of raw material. Considering the nonlinear characteristics of the raw anode production process and combining the advantages of the neural network in the nonlinear prediction problem, deep neural networks are used to model the raw anode volume density. For the uncertainty of neural network model structure, a competitive evolutionary adaptive genetic algorithm is proposed to determine the network model structure. The algorithm selects well-performing individuals through competitive fitness values to form progeny populations. During the process of genetic variation, the variation probability is adaptive calculated from the fitness values of the parent and the current number of population iterations to converge the optimal results. Experimental results show that in terms of production data, the optimization ability of the neural network model structure is significantly improved compared with other algorithms, with the root mean square error of the prediction value of the raw anode volume density is 0.005, which is smaller error than other methods. |
| ArticleNumber | 354 |
| Author | Tian, Xuefa Cao, Danyang |
| Author_xml | – sequence: 1 givenname: Danyang orcidid: 0000-0002-9779-9466 surname: Cao fullname: Cao, Danyang email: ufocdy@163.com organization: School of Information Science and Technology, North China University of Technology – sequence: 2 givenname: Xuefa surname: Tian fullname: Tian, Xuefa organization: School of Information Science and Technology, North China University of Technology |
| BookMark | eNp9kEFPwyAUx4mZiXPuC3gi8VwFSqEc59RpskRj1CuhlG4sHUxgMfv2dtZkxsNOjzzej__jdw4GzjsDwCVG1xghfhMpEVxkiJAMYULLDJ2AIWEMZ6VAfPDnfAbGMa4QQqRAlLJiCOav6gtOnK8N_PDtdm3gnXHRph18Caa2Olnv4KRd-GDTcg1vVTQ17FppaeDMOJOsPlxfgNNGtdGMf-sIvD_cv00fs_nz7Gk6mWcaM4oykqua0oI3uKwLU5QV00QZTitNRC0aqrVWFa5KqjAWeUUYr4uCNbwRlOHug_kIXPXvboL_3JqY5Mpvg-siJRF5jlkpMO6mSD-lg48xmEZugl2rsJMYyb042YuTnTj5I06iDir_QdomtbeQgrLtcTTv0djluIUJh62OUN8OfYLX |
| CitedBy_id | crossref_primary_10_1155_2022_3590224 |
| Cites_doi | 10.3389/fams.2017.00009 10.1016/j.swevo.2020.100650 10.2307/2346413 10.1016/j.asoc.2018.11.012 10.1016/j.cie.2019.05.012 10.1007/s00170-013-4753-z 10.1007/s10614-020-10088-0 10.1016/j.engappai.2021.104408 10.1504/IJAAC.2022.10044253 10.1109/IESM.2015.7380120 10.1109/JSEN.2019.2942081 10.1016/j.knosys.2019.05.028 10.1007/s12205-020-1200-1 10.1155/2017/7430125 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022 – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s42979-022-01248-0 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2661-8907 |
| ExternalDocumentID | 10_1007_s42979_022_01248_0 |
| GrantInformation_xml | – fundername: Supported by Yuyou Talent Support Plan of North China University of Technology grantid: 107051360019XN132/017 |
| GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABHQN ABJNI ABMQK ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AFBBN AFKRA AFQWF AGMZJ AGQEE AGRTI AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ARAPS BAPOH BENPR BGLVJ CCPQU DPUIP EBLON EBS FIGPU FNLPD GGCAI GNWQR HCIFZ IKXTQ IWAJR JZLTJ K7- LLZTM NPVJJ NQJWS OK1 PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR 2JN AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c1640-23ad4457f18d5e58b6c2ae74bc29d9f4cccab1b84a1193b267d556f7f94611243 |
| IEDL.DBID | BENPR |
| ISSN | 2661-8907 2662-995X |
| IngestDate | Sat Jul 26 02:23:34 EDT 2025 Wed Oct 01 03:59:09 EDT 2025 Thu Apr 24 23:10:05 EDT 2025 Fri Feb 21 02:45:51 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Neural network Competitive evolution Genetic algorithm Prediction Adaptation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1640-23ad4457f18d5e58b6c2ae74bc29d9f4cccab1b84a1193b267d556f7f94611243 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9779-9466 |
| PQID | 2933168911 |
| PQPubID | 6623307 |
| ParticipantIDs | proquest_journals_2933168911 crossref_primary_10_1007_s42979_022_01248_0 crossref_citationtrail_10_1007_s42979_022_01248_0 springer_journals_10_1007_s42979_022_01248_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220630 |
| PublicationDateYYYYMMDD | 2022-06-30 |
| PublicationDate_xml | – month: 6 year: 2022 text: 20220630 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Kolkata |
| PublicationTitle | SN computer science |
| PublicationTitleAbbrev | SN COMPUT. SCI |
| PublicationYear | 2022 |
| Publisher | Springer Nature Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
| References | Hui, Pengfei (CR6) 2019; 40 Qing-hua, Jianbang (CR1) 2018; 28 Jebari (CR18) 2013; 3 Bergstra, Bengio (CR14) 2012; 13 CR16 Yong-feng, Zhi-qiang (CR3) 2020; 42 CR15 CR11 CR10 CR30 As, Ab (CR20) 2019; 75 Chen, Chen, Ou (CR22) 2019; 138 Truong, Nguyen (CR28) 2020; 2 Saini (CR19) 2017; 6 Luobing, Xiaolan (CR2) 2020; 53 Lerman (CR13) 1980; 29 Liang, Jinlin, Hongdong (CR7) 2020; 61 CR4 Jakub, Peter (CR27) 2017; 3 CR29 CR9 CR26 Qu, Chen, Liu (CR12) 2015; 28 CR25 CR24 Fiszelew, Britos, Ochoa (CR17) 2007; 27 CR21 Ortego, Diez-Olivan, Ser (CR5) 2020; 54 Arram, Ayob (CR23) 2019; 133 Chuan-ying, Yu-gang (CR8) 2020; 49 W Liang (1248_CR7) 2020; 61 1248_CR4 K Jebari (1248_CR18) 2013; 3 1248_CR21 1248_CR24 P Lerman (1248_CR13) 1980; 29 1248_CR26 T Qing-hua (1248_CR1) 2018; 28 Z Yong-feng (1248_CR3) 2020; 42 A As (1248_CR20) 2019; 75 1248_CR25 1248_CR29 P Ortego (1248_CR5) 2020; 54 J Qu (1248_CR12) 2015; 28 JC Chen (1248_CR22) 2019; 138 1248_CR9 A Fiszelew (1248_CR17) 2007; 27 A Arram (1248_CR23) 2019; 133 TT Truong (1248_CR28) 2020; 2 L Hui (1248_CR6) 2019; 40 J Bergstra (1248_CR14) 2012; 13 1248_CR30 1248_CR11 1248_CR10 1248_CR15 1248_CR16 ZHAO Chuan-ying (1248_CR8) 2020; 49 N Saini (1248_CR19) 2017; 6 K Jakub (1248_CR27) 2017; 3 L Luobing (1248_CR2) 2020; 53 |
| References_xml | – volume: 61 start-page: 21 issue: S1 year: 2020 end-page: 30 ident: CR7 article-title: Study on unmanned heading PID control based on nonlinear model and genetic algorithm publication-title: Shipbuild China – volume: 42 start-page: 1372 issue: 10 year: 2020 end-page: 1380 ident: CR3 article-title: Remaining useful life prediction based on an integrated neural network publication-title: Chin J Eng. – volume: 3 start-page: 9 year: 2017 end-page: 28 ident: CR27 article-title: Semi-Stochastic Gradient Descent Methods publication-title: Front Appl Math Stat. doi: 10.3389/fams.2017.00009 – volume: 2 start-page: 1 year: 2020 end-page: 30 ident: CR28 article-title: Backtracking Gradient Descent Method and Some Applications in Large Scale Optimisation. Part 2: Algorithms and Experiments publication-title: Appl Math Optim – ident: CR4 – ident: CR16 – ident: CR30 – ident: CR10 – volume: 53 start-page: 13 issue: S1 year: 2020 end-page: 19 ident: CR2 article-title: Prediction of maximum ground settlement induced by shield tunneling based on recurrent neural network publication-title: Chin Civil Eng J. – ident: CR29 – ident: CR25 – volume: 40 start-page: 185 issue: 12 year: 2019 end-page: 195 ident: CR6 article-title: Feature selection of converter steelmaking process based on the improved genetic algorithm publication-title: Instrumentation – volume: 54 start-page: 100650 year: 2020 ident: CR5 article-title: Evolutionary LSTM-FCN networks for pattern classification in industrial processes publication-title: Swarm Evol Comput. doi: 10.1016/j.swevo.2020.100650 – volume: 27 start-page: 15 year: 2007 end-page: 24 ident: CR17 article-title: Finding optimal neural networks architecture publication-title: Res Comput Sci – ident: CR21 – volume: 138 start-page: 106114.1 issue: Dec. year: 2019 end-page: 106114.21 ident: CR22 article-title: Adaptive genetic algorithm for parcel hub scheduling problem with shortcuts in closed-loop sortation system publication-title: Comput Ind Eng – volume: 6 start-page: 22261 issue: 12 year: 2017 end-page: 22263 ident: CR19 article-title: Review of Selection Methods in Genetic Algorithms publication-title: Int J Eng Comput Sci. – volume: 3 start-page: 333 year: 2013 end-page: 344 ident: CR18 article-title: Selection Methods for Genetic Algorithms publication-title: Int J Emerg Sci. – volume: 29 start-page: 77 year: 1980 ident: CR13 article-title: Fitting Segmented Regression Models by Grid Search publication-title: Appl Stat doi: 10.2307/2346413 – ident: CR15 – ident: CR11 – ident: CR9 – volume: 13 start-page: 281 issue: 10 year: 2012 end-page: 305 ident: CR14 article-title: Random Search for Hyper-Parameter Optimization publication-title: J Mach Learn Res – volume: 49 start-page: 316 issue: 02 year: 2020 end-page: 321 ident: CR8 article-title: Optimization of Process Parameters of Magnetic Abrasive Finishing TC4 Material Based on Neural Network and Genetic Algorithm publication-title: Surf Technol. – volume: 28 start-page: 2103 issue: 10 year: 2018 end-page: 2111 ident: CR1 article-title: Prediction for oxidation leaching behavior of antimony containing sulfide ore based on artificial neural network model publication-title: Trans Nonferrous Metals Soc China – volume: 75 start-page: 575 year: 2019 end-page: 587 ident: CR20 article-title: Adaptive multi-parent crossover GA for feature optimization in epileptic seizure identification - ScienceDirect publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.11.012 – volume: 133 start-page: 267 issue: JUL. year: 2019 end-page: 274 ident: CR23 article-title: A novel Multi-parent order crossover in Genetic Algorithm for combinatorial optimization problems publication-title: Comput Ind Eng doi: 10.1016/j.cie.2019.05.012 – volume: 28 start-page: 774 year: 2015 end-page: 778 ident: CR12 article-title: Application of support vector machine based on improved grid search in quantitative analysis of gas publication-title: Chin J Sens Actuators – ident: CR26 – ident: CR24 – ident: 1248_CR24 doi: 10.1007/s00170-013-4753-z – ident: 1248_CR4 doi: 10.1007/s10614-020-10088-0 – ident: 1248_CR25 doi: 10.1016/j.engappai.2021.104408 – ident: 1248_CR26 doi: 10.1504/IJAAC.2022.10044253 – ident: 1248_CR29 – volume: 133 start-page: 267 issue: JUL. year: 2019 ident: 1248_CR23 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2019.05.012 – ident: 1248_CR9 doi: 10.1109/IESM.2015.7380120 – volume: 28 start-page: 774 year: 2015 ident: 1248_CR12 publication-title: Chin J Sens Actuators – volume: 6 start-page: 22261 issue: 12 year: 2017 ident: 1248_CR19 publication-title: Int J Eng Comput Sci. – volume: 54 start-page: 100650 year: 2020 ident: 1248_CR5 publication-title: Swarm Evol Comput. doi: 10.1016/j.swevo.2020.100650 – volume: 61 start-page: 21 issue: S1 year: 2020 ident: 1248_CR7 publication-title: Shipbuild China – volume: 28 start-page: 2103 issue: 10 year: 2018 ident: 1248_CR1 publication-title: Trans Nonferrous Metals Soc China – volume: 13 start-page: 281 issue: 10 year: 2012 ident: 1248_CR14 publication-title: J Mach Learn Res – ident: 1248_CR16 doi: 10.1109/JSEN.2019.2942081 – volume: 42 start-page: 1372 issue: 10 year: 2020 ident: 1248_CR3 publication-title: Chin J Eng. – volume: 138 start-page: 106114.1 issue: Dec. year: 2019 ident: 1248_CR22 publication-title: Comput Ind Eng – volume: 40 start-page: 185 issue: 12 year: 2019 ident: 1248_CR6 publication-title: Instrumentation – volume: 75 start-page: 575 year: 2019 ident: 1248_CR20 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.11.012 – volume: 49 start-page: 316 issue: 02 year: 2020 ident: 1248_CR8 publication-title: Surf Technol. – ident: 1248_CR10 doi: 10.1016/j.knosys.2019.05.028 – ident: 1248_CR15 doi: 10.1007/s12205-020-1200-1 – ident: 1248_CR21 doi: 10.1155/2017/7430125 – volume: 27 start-page: 15 year: 2007 ident: 1248_CR17 publication-title: Res Comput Sci – ident: 1248_CR11 – ident: 1248_CR30 – volume: 53 start-page: 13 issue: S1 year: 2020 ident: 1248_CR2 publication-title: Chin Civil Eng J. – volume: 3 start-page: 333 year: 2013 ident: 1248_CR18 publication-title: Int J Emerg Sci. – volume: 2 start-page: 1 year: 2020 ident: 1248_CR28 publication-title: Appl Math Optim – volume: 3 start-page: 9 year: 2017 ident: 1248_CR27 publication-title: Front Appl Math Stat. doi: 10.3389/fams.2017.00009 – volume: 29 start-page: 77 year: 1980 ident: 1248_CR13 publication-title: Appl Stat doi: 10.2307/2346413 |
| SSID | ssj0002504465 |
| Score | 2.189406 |
| Snippet | In the process of aluminum electrolytic anode production, raw anode volume density is an important indicator of anode quality, which is of great significance... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 354 |
| SubjectTerms | Adaptive algorithms Aluminum industry Artificial neural networks Computer Imaging Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Datasets Density Electrolytes Evolutionary algorithms Genes Genetic algorithms Information Systems and Communication Service Methods Neural networks Optimization Pattern Recognition and Graphics Production controls Raw materials Software Engineering/Programming and Operating Systems Survey Article Vision |
| Title | Raw Anode Volume Density Prediction Algorithm Based on the Genetic Algorithm |
| URI | https://link.springer.com/article/10.1007/s42979-022-01248-0 https://www.proquest.com/docview/2933168911 |
| Volume | 3 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: AFBBN dateStart: 20190625 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2661-8907 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB5se_Eiior1UXLwpsF9JPs4iHS1VUQWESu9Ldk89FBbHyviv3cSd1sU7HWzG9iZZB6ZyfcBHBqpMTUONW4kzE2YEIwmXKdU61iE2vckN67LN4-uRux6zMcrkDd3YWxbZWMTnaFWM2nPyE_QLVmOJdybZy-v1LJG2epqQ6EhamoFdeogxlrQCSwyVhs62SC_vZufuljALub4JdExBTRN-bi-SePu06FxjlNqG9zRbrOEer-91SIE_VM1dc5ouA5rdRRJ-j9q34AVPd2EmzvxSTCdV5o8OJtDLmx3evVFbt9sOcaqgPQnj_hX1dMzydB_KYKPMAQkFn0a51oMb8FoOLg_v6I1WQKVmPF4NAiFYozHxk8U1zwpIxkIHbNSBqlKDZOoqtIvEyZ8jNnKIIoV55GJTcoijLlYuA3t6Wyqd4DIRIWhwjEMz5hfqsQY30gv0kyktmrZBb8RSiFrJHFLaDEp5hjITpAFCrJwgiy8LhzNv3n5wdFY-vZ-I-ui3lPvxWIFdOG4kf9i-P_ZdpfPtgergVO5bQLch3b19qEPMNKoyh60kuFlDzr9YZblvXoxfQNN8c8- |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LLwRBEK54HLgIQSyLPnCiYx7dM9MHkfXKYm1EkL2Nnn5wYJe1Iv6c36a6zeyGhJvr9Ewl81V1V1XXC2DDKoOucWxwI6FvwqRkNONGUGNSGZswUNz6LN920rxmpx3eGYOPqhbGpVVWZ6I_qHVPuTvyHVRLbsYS7s29p2fqpka56Go1QkOWoxX0rm8xVhZ2nJn3N3ThXnZPDpHfm1F0fHR10KTllAGq0FUIaBRLzRhPbZhpbnhWJCqSJmWFioQWlin8xyIsMiZDNHaKKEk154lNrWAJGissRrrjMMliJtD5m9w_al9cDm95XIMw5udZoiKMqBC8U1bu-Po9VAapoC6hHvUEy2jwXTuOTN4fUVqv_I5nYaa0WknjS8zmYMx056F1Kd9Io9vThtz4M44cumz4wTu56Lvwj2M5aTzcIYqD-0eyj_pSE3yEJidx3a6R1mh5Aa7_BbZFmOj2umYJiMp0HGtcQ3OQhYXOrA2tChLDpHBR0hqEFSi5KjuXuwEaD_mw57IHMkcgcw9kHtRga_jN01ffjj_frldY5-UefslHEleD7Qr_0fLv1Jb_prYOU82r81beOmmfrcB05NnvEhDrMDHov5pVtHIGxVopSgRu_1t6PwF5rQkp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Raw+Anode+Volume+Density+Prediction+Algorithm+Based+on+the+Genetic+Algorithm&rft.jtitle=SN+computer+science&rft.au=Cao%2C+Danyang&rft.au=Tian%2C+Xuefa&rft.date=2022-06-30&rft.issn=2661-8907&rft.eissn=2661-8907&rft.volume=3&rft.issue=5&rft_id=info:doi/10.1007%2Fs42979-022-01248-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42979_022_01248_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon |