Raw Anode Volume Density Prediction Algorithm Based on the Genetic Algorithm

In the process of aluminum electrolytic anode production, raw anode volume density is an important indicator of anode quality, which is of great significance to ensure the quality of raw anode volume density through raw anode production control parameters and the ratio of raw material. Considering t...

Full description

Saved in:
Bibliographic Details
Published inSN computer science Vol. 3; no. 5; p. 354
Main Authors Cao, Danyang, Tian, Xuefa
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 30.06.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2661-8907
2662-995X
2661-8907
DOI10.1007/s42979-022-01248-0

Cover

Abstract In the process of aluminum electrolytic anode production, raw anode volume density is an important indicator of anode quality, which is of great significance to ensure the quality of raw anode volume density through raw anode production control parameters and the ratio of raw material. Considering the nonlinear characteristics of the raw anode production process and combining the advantages of the neural network in the nonlinear prediction problem, deep neural networks are used to model the raw anode volume density. For the uncertainty of neural network model structure, a competitive evolutionary adaptive genetic algorithm is proposed to determine the network model structure. The algorithm selects well-performing individuals through competitive fitness values to form progeny populations. During the process of genetic variation, the variation probability is adaptive calculated from the fitness values of the parent and the current number of population iterations to converge the optimal results. Experimental results show that in terms of production data, the optimization ability of the neural network model structure is significantly improved compared with other algorithms, with the root mean square error of the prediction value of the raw anode volume density is 0.005, which is smaller error than other methods.
AbstractList In the process of aluminum electrolytic anode production, raw anode volume density is an important indicator of anode quality, which is of great significance to ensure the quality of raw anode volume density through raw anode production control parameters and the ratio of raw material. Considering the nonlinear characteristics of the raw anode production process and combining the advantages of the neural network in the nonlinear prediction problem, deep neural networks are used to model the raw anode volume density. For the uncertainty of neural network model structure, a competitive evolutionary adaptive genetic algorithm is proposed to determine the network model structure. The algorithm selects well-performing individuals through competitive fitness values to form progeny populations. During the process of genetic variation, the variation probability is adaptive calculated from the fitness values of the parent and the current number of population iterations to converge the optimal results. Experimental results show that in terms of production data, the optimization ability of the neural network model structure is significantly improved compared with other algorithms, with the root mean square error of the prediction value of the raw anode volume density is 0.005, which is smaller error than other methods.
ArticleNumber 354
Author Tian, Xuefa
Cao, Danyang
Author_xml – sequence: 1
  givenname: Danyang
  orcidid: 0000-0002-9779-9466
  surname: Cao
  fullname: Cao, Danyang
  email: ufocdy@163.com
  organization: School of Information Science and Technology, North China University of Technology
– sequence: 2
  givenname: Xuefa
  surname: Tian
  fullname: Tian, Xuefa
  organization: School of Information Science and Technology, North China University of Technology
BookMark eNp9kEFPwyAUx4mZiXPuC3gi8VwFSqEc59RpskRj1CuhlG4sHUxgMfv2dtZkxsNOjzzej__jdw4GzjsDwCVG1xghfhMpEVxkiJAMYULLDJ2AIWEMZ6VAfPDnfAbGMa4QQqRAlLJiCOav6gtOnK8N_PDtdm3gnXHRph18Caa2Olnv4KRd-GDTcg1vVTQ17FppaeDMOJOsPlxfgNNGtdGMf-sIvD_cv00fs_nz7Gk6mWcaM4oykqua0oI3uKwLU5QV00QZTitNRC0aqrVWFa5KqjAWeUUYr4uCNbwRlOHug_kIXPXvboL_3JqY5Mpvg-siJRF5jlkpMO6mSD-lg48xmEZugl2rsJMYyb042YuTnTj5I06iDir_QdomtbeQgrLtcTTv0djluIUJh62OUN8OfYLX
CitedBy_id crossref_primary_10_1155_2022_3590224
Cites_doi 10.3389/fams.2017.00009
10.1016/j.swevo.2020.100650
10.2307/2346413
10.1016/j.asoc.2018.11.012
10.1016/j.cie.2019.05.012
10.1007/s00170-013-4753-z
10.1007/s10614-020-10088-0
10.1016/j.engappai.2021.104408
10.1504/IJAAC.2022.10044253
10.1109/IESM.2015.7380120
10.1109/JSEN.2019.2942081
10.1016/j.knosys.2019.05.028
10.1007/s12205-020-1200-1
10.1155/2017/7430125
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022
The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022
– notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s42979-022-01248-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID 10_1007_s42979_022_01248_0
GrantInformation_xml – fundername: Supported by Yuyou Talent Support Plan of North China University of Technology
  grantid: 107051360019XN132/017
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABHQN
ABJNI
ABMQK
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFKRA
AFQWF
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ARAPS
BAPOH
BENPR
BGLVJ
CCPQU
DPUIP
EBLON
EBS
FIGPU
FNLPD
GGCAI
GNWQR
HCIFZ
IKXTQ
IWAJR
JZLTJ
K7-
LLZTM
NPVJJ
NQJWS
OK1
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
2JN
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c1640-23ad4457f18d5e58b6c2ae74bc29d9f4cccab1b84a1193b267d556f7f94611243
IEDL.DBID BENPR
ISSN 2661-8907
2662-995X
IngestDate Sat Jul 26 02:23:34 EDT 2025
Wed Oct 01 03:59:09 EDT 2025
Thu Apr 24 23:10:05 EDT 2025
Fri Feb 21 02:45:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Neural network
Competitive evolution
Genetic algorithm
Prediction
Adaptation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1640-23ad4457f18d5e58b6c2ae74bc29d9f4cccab1b84a1193b267d556f7f94611243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9779-9466
PQID 2933168911
PQPubID 6623307
ParticipantIDs proquest_journals_2933168911
crossref_primary_10_1007_s42979_022_01248_0
crossref_citationtrail_10_1007_s42979_022_01248_0
springer_journals_10_1007_s42979_022_01248_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220630
PublicationDateYYYYMMDD 2022-06-30
PublicationDate_xml – month: 6
  year: 2022
  text: 20220630
  day: 30
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationYear 2022
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References Hui, Pengfei (CR6) 2019; 40
Qing-hua, Jianbang (CR1) 2018; 28
Jebari (CR18) 2013; 3
Bergstra, Bengio (CR14) 2012; 13
CR16
Yong-feng, Zhi-qiang (CR3) 2020; 42
CR15
CR11
CR10
CR30
As, Ab (CR20) 2019; 75
Chen, Chen, Ou (CR22) 2019; 138
Truong, Nguyen (CR28) 2020; 2
Saini (CR19) 2017; 6
Luobing, Xiaolan (CR2) 2020; 53
Lerman (CR13) 1980; 29
Liang, Jinlin, Hongdong (CR7) 2020; 61
CR4
Jakub, Peter (CR27) 2017; 3
CR29
CR9
CR26
Qu, Chen, Liu (CR12) 2015; 28
CR25
CR24
Fiszelew, Britos, Ochoa (CR17) 2007; 27
CR21
Ortego, Diez-Olivan, Ser (CR5) 2020; 54
Arram, Ayob (CR23) 2019; 133
Chuan-ying, Yu-gang (CR8) 2020; 49
W Liang (1248_CR7) 2020; 61
1248_CR4
K Jebari (1248_CR18) 2013; 3
1248_CR21
1248_CR24
P Lerman (1248_CR13) 1980; 29
1248_CR26
T Qing-hua (1248_CR1) 2018; 28
Z Yong-feng (1248_CR3) 2020; 42
A As (1248_CR20) 2019; 75
1248_CR25
1248_CR29
P Ortego (1248_CR5) 2020; 54
J Qu (1248_CR12) 2015; 28
JC Chen (1248_CR22) 2019; 138
1248_CR9
A Fiszelew (1248_CR17) 2007; 27
A Arram (1248_CR23) 2019; 133
TT Truong (1248_CR28) 2020; 2
L Hui (1248_CR6) 2019; 40
J Bergstra (1248_CR14) 2012; 13
1248_CR30
1248_CR11
1248_CR10
1248_CR15
1248_CR16
ZHAO Chuan-ying (1248_CR8) 2020; 49
N Saini (1248_CR19) 2017; 6
K Jakub (1248_CR27) 2017; 3
L Luobing (1248_CR2) 2020; 53
References_xml – volume: 61
  start-page: 21
  issue: S1
  year: 2020
  end-page: 30
  ident: CR7
  article-title: Study on unmanned heading PID control based on nonlinear model and genetic algorithm
  publication-title: Shipbuild China
– volume: 42
  start-page: 1372
  issue: 10
  year: 2020
  end-page: 1380
  ident: CR3
  article-title: Remaining useful life prediction based on an integrated neural network
  publication-title: Chin J Eng.
– volume: 3
  start-page: 9
  year: 2017
  end-page: 28
  ident: CR27
  article-title: Semi-Stochastic Gradient Descent Methods
  publication-title: Front Appl Math Stat.
  doi: 10.3389/fams.2017.00009
– volume: 2
  start-page: 1
  year: 2020
  end-page: 30
  ident: CR28
  article-title: Backtracking Gradient Descent Method and Some Applications in Large Scale Optimisation. Part 2: Algorithms and Experiments
  publication-title: Appl Math Optim
– ident: CR4
– ident: CR16
– ident: CR30
– ident: CR10
– volume: 53
  start-page: 13
  issue: S1
  year: 2020
  end-page: 19
  ident: CR2
  article-title: Prediction of maximum ground settlement induced by shield tunneling based on recurrent neural network
  publication-title: Chin Civil Eng J.
– ident: CR29
– ident: CR25
– volume: 40
  start-page: 185
  issue: 12
  year: 2019
  end-page: 195
  ident: CR6
  article-title: Feature selection of converter steelmaking process based on the improved genetic algorithm
  publication-title: Instrumentation
– volume: 54
  start-page: 100650
  year: 2020
  ident: CR5
  article-title: Evolutionary LSTM-FCN networks for pattern classification in industrial processes
  publication-title: Swarm Evol Comput.
  doi: 10.1016/j.swevo.2020.100650
– volume: 27
  start-page: 15
  year: 2007
  end-page: 24
  ident: CR17
  article-title: Finding optimal neural networks architecture
  publication-title: Res Comput Sci
– ident: CR21
– volume: 138
  start-page: 106114.1
  issue: Dec.
  year: 2019
  end-page: 106114.21
  ident: CR22
  article-title: Adaptive genetic algorithm for parcel hub scheduling problem with shortcuts in closed-loop sortation system
  publication-title: Comput Ind Eng
– volume: 6
  start-page: 22261
  issue: 12
  year: 2017
  end-page: 22263
  ident: CR19
  article-title: Review of Selection Methods in Genetic Algorithms
  publication-title: Int J Eng Comput Sci.
– volume: 3
  start-page: 333
  year: 2013
  end-page: 344
  ident: CR18
  article-title: Selection Methods for Genetic Algorithms
  publication-title: Int J Emerg Sci.
– volume: 29
  start-page: 77
  year: 1980
  ident: CR13
  article-title: Fitting Segmented Regression Models by Grid Search
  publication-title: Appl Stat
  doi: 10.2307/2346413
– ident: CR15
– ident: CR11
– ident: CR9
– volume: 13
  start-page: 281
  issue: 10
  year: 2012
  end-page: 305
  ident: CR14
  article-title: Random Search for Hyper-Parameter Optimization
  publication-title: J Mach Learn Res
– volume: 49
  start-page: 316
  issue: 02
  year: 2020
  end-page: 321
  ident: CR8
  article-title: Optimization of Process Parameters of Magnetic Abrasive Finishing TC4 Material Based on Neural Network and Genetic Algorithm
  publication-title: Surf Technol.
– volume: 28
  start-page: 2103
  issue: 10
  year: 2018
  end-page: 2111
  ident: CR1
  article-title: Prediction for oxidation leaching behavior of antimony containing sulfide ore based on artificial neural network model
  publication-title: Trans Nonferrous Metals Soc China
– volume: 75
  start-page: 575
  year: 2019
  end-page: 587
  ident: CR20
  article-title: Adaptive multi-parent crossover GA for feature optimization in epileptic seizure identification - ScienceDirect
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.11.012
– volume: 133
  start-page: 267
  issue: JUL.
  year: 2019
  end-page: 274
  ident: CR23
  article-title: A novel Multi-parent order crossover in Genetic Algorithm for combinatorial optimization problems
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2019.05.012
– volume: 28
  start-page: 774
  year: 2015
  end-page: 778
  ident: CR12
  article-title: Application of support vector machine based on improved grid search in quantitative analysis of gas
  publication-title: Chin J Sens Actuators
– ident: CR26
– ident: CR24
– ident: 1248_CR24
  doi: 10.1007/s00170-013-4753-z
– ident: 1248_CR4
  doi: 10.1007/s10614-020-10088-0
– ident: 1248_CR25
  doi: 10.1016/j.engappai.2021.104408
– ident: 1248_CR26
  doi: 10.1504/IJAAC.2022.10044253
– ident: 1248_CR29
– volume: 133
  start-page: 267
  issue: JUL.
  year: 2019
  ident: 1248_CR23
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2019.05.012
– ident: 1248_CR9
  doi: 10.1109/IESM.2015.7380120
– volume: 28
  start-page: 774
  year: 2015
  ident: 1248_CR12
  publication-title: Chin J Sens Actuators
– volume: 6
  start-page: 22261
  issue: 12
  year: 2017
  ident: 1248_CR19
  publication-title: Int J Eng Comput Sci.
– volume: 54
  start-page: 100650
  year: 2020
  ident: 1248_CR5
  publication-title: Swarm Evol Comput.
  doi: 10.1016/j.swevo.2020.100650
– volume: 61
  start-page: 21
  issue: S1
  year: 2020
  ident: 1248_CR7
  publication-title: Shipbuild China
– volume: 28
  start-page: 2103
  issue: 10
  year: 2018
  ident: 1248_CR1
  publication-title: Trans Nonferrous Metals Soc China
– volume: 13
  start-page: 281
  issue: 10
  year: 2012
  ident: 1248_CR14
  publication-title: J Mach Learn Res
– ident: 1248_CR16
  doi: 10.1109/JSEN.2019.2942081
– volume: 42
  start-page: 1372
  issue: 10
  year: 2020
  ident: 1248_CR3
  publication-title: Chin J Eng.
– volume: 138
  start-page: 106114.1
  issue: Dec.
  year: 2019
  ident: 1248_CR22
  publication-title: Comput Ind Eng
– volume: 40
  start-page: 185
  issue: 12
  year: 2019
  ident: 1248_CR6
  publication-title: Instrumentation
– volume: 75
  start-page: 575
  year: 2019
  ident: 1248_CR20
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.11.012
– volume: 49
  start-page: 316
  issue: 02
  year: 2020
  ident: 1248_CR8
  publication-title: Surf Technol.
– ident: 1248_CR10
  doi: 10.1016/j.knosys.2019.05.028
– ident: 1248_CR15
  doi: 10.1007/s12205-020-1200-1
– ident: 1248_CR21
  doi: 10.1155/2017/7430125
– volume: 27
  start-page: 15
  year: 2007
  ident: 1248_CR17
  publication-title: Res Comput Sci
– ident: 1248_CR11
– ident: 1248_CR30
– volume: 53
  start-page: 13
  issue: S1
  year: 2020
  ident: 1248_CR2
  publication-title: Chin Civil Eng J.
– volume: 3
  start-page: 333
  year: 2013
  ident: 1248_CR18
  publication-title: Int J Emerg Sci.
– volume: 2
  start-page: 1
  year: 2020
  ident: 1248_CR28
  publication-title: Appl Math Optim
– volume: 3
  start-page: 9
  year: 2017
  ident: 1248_CR27
  publication-title: Front Appl Math Stat.
  doi: 10.3389/fams.2017.00009
– volume: 29
  start-page: 77
  year: 1980
  ident: 1248_CR13
  publication-title: Appl Stat
  doi: 10.2307/2346413
SSID ssj0002504465
Score 2.189406
Snippet In the process of aluminum electrolytic anode production, raw anode volume density is an important indicator of anode quality, which is of great significance...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 354
SubjectTerms Adaptive algorithms
Aluminum industry
Artificial neural networks
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Datasets
Density
Electrolytes
Evolutionary algorithms
Genes
Genetic algorithms
Information Systems and Communication Service
Methods
Neural networks
Optimization
Pattern Recognition and Graphics
Production controls
Raw materials
Software Engineering/Programming and Operating Systems
Survey Article
Vision
Title Raw Anode Volume Density Prediction Algorithm Based on the Genetic Algorithm
URI https://link.springer.com/article/10.1007/s42979-022-01248-0
https://www.proquest.com/docview/2933168911
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: AFBBN
  dateStart: 20190625
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2661-8907
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB5se_Eiior1UXLwpsF9JPs4iHS1VUQWESu9Ldk89FBbHyviv3cSd1sU7HWzG9iZZB6ZyfcBHBqpMTUONW4kzE2YEIwmXKdU61iE2vckN67LN4-uRux6zMcrkDd3YWxbZWMTnaFWM2nPyE_QLVmOJdybZy-v1LJG2epqQ6EhamoFdeogxlrQCSwyVhs62SC_vZufuljALub4JdExBTRN-bi-SePu06FxjlNqG9zRbrOEer-91SIE_VM1dc5ouA5rdRRJ-j9q34AVPd2EmzvxSTCdV5o8OJtDLmx3evVFbt9sOcaqgPQnj_hX1dMzydB_KYKPMAQkFn0a51oMb8FoOLg_v6I1WQKVmPF4NAiFYozHxk8U1zwpIxkIHbNSBqlKDZOoqtIvEyZ8jNnKIIoV55GJTcoijLlYuA3t6Wyqd4DIRIWhwjEMz5hfqsQY30gv0kyktmrZBb8RSiFrJHFLaDEp5hjITpAFCrJwgiy8LhzNv3n5wdFY-vZ-I-ui3lPvxWIFdOG4kf9i-P_ZdpfPtgergVO5bQLch3b19qEPMNKoyh60kuFlDzr9YZblvXoxfQNN8c8-
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LLwRBEK54HLgIQSyLPnCiYx7dM9MHkfXKYm1EkL2Nnn5wYJe1Iv6c36a6zeyGhJvr9Ewl81V1V1XXC2DDKoOucWxwI6FvwqRkNONGUGNSGZswUNz6LN920rxmpx3eGYOPqhbGpVVWZ6I_qHVPuTvyHVRLbsYS7s29p2fqpka56Go1QkOWoxX0rm8xVhZ2nJn3N3ThXnZPDpHfm1F0fHR10KTllAGq0FUIaBRLzRhPbZhpbnhWJCqSJmWFioQWlin8xyIsMiZDNHaKKEk154lNrWAJGissRrrjMMliJtD5m9w_al9cDm95XIMw5udZoiKMqBC8U1bu-Po9VAapoC6hHvUEy2jwXTuOTN4fUVqv_I5nYaa0WknjS8zmYMx056F1Kd9Io9vThtz4M44cumz4wTu56Lvwj2M5aTzcIYqD-0eyj_pSE3yEJidx3a6R1mh5Aa7_BbZFmOj2umYJiMp0HGtcQ3OQhYXOrA2tChLDpHBR0hqEFSi5KjuXuwEaD_mw57IHMkcgcw9kHtRga_jN01ffjj_frldY5-UefslHEleD7Qr_0fLv1Jb_prYOU82r81beOmmfrcB05NnvEhDrMDHov5pVtHIGxVopSgRu_1t6PwF5rQkp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Raw+Anode+Volume+Density+Prediction+Algorithm+Based+on+the+Genetic+Algorithm&rft.jtitle=SN+computer+science&rft.au=Cao%2C+Danyang&rft.au=Tian%2C+Xuefa&rft.date=2022-06-30&rft.issn=2661-8907&rft.eissn=2661-8907&rft.volume=3&rft.issue=5&rft_id=info:doi/10.1007%2Fs42979-022-01248-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42979_022_01248_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon