A New Deep Reinforcement Learning Run-to-Run Control Algorithm for Mixed-Product Production Mode in Semiconductor Manufacturing

This paper proposes a new Run-to-Run (R2R) control framework based on deep deterministic policy gradient (DDPG) for the mixed-product production mode in semiconductor manufacturing. The DDPG algorithm is particularly developed to configure a deep reinforcement learning environment well suited to mix...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automation science and engineering p. 1
Main Authors Fan, Shu-Kai S., Chen, Tzu-Jung
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text
ISSN1545-5955
1558-3783
DOI10.1109/TASE.2025.3526675

Cover

More Information
Summary:This paper proposes a new Run-to-Run (R2R) control framework based on deep deterministic policy gradient (DDPG) for the mixed-product production mode in semiconductor manufacturing. The DDPG algorithm is particularly developed to configure a deep reinforcement learning environment well suited to mixed-product production modes. To address the challenges posed in deep reinforcement learning, three enhanced mechanisms have been developed to improve the training of the proposed DDPG model for mixed-product R2R applications. These mechanisms include a piece-wise reward function, training with dynamic targets, and the new recall principle. It is demonstrated from the comprehensive simulation results that the proposed R2R control framework outperforms five noted mixed-product R2R control algorithms in the literature. The research outcome of this paper signifies a promising viability of deep reinforcement learning for highly complex and dynamic environments with continuous action spaces in the mixed-product R2R practice.
ISSN:1545-5955
1558-3783
DOI:10.1109/TASE.2025.3526675