时变多车型下的生鲜农产品配送路径优化模型
针对农业供应链的运输环节中生鲜农产品配送模型存在的速度恒定、碳排放计算方法单一的问题,本研究结合路网时变特征和新的多车型碳排放计算方法,提出了考虑配送距离、多车型碳排放量、货物损耗和车辆固定成本等4个优化目标的生鲜农产品配送路径优化模型;并根据模型特点提出了一种改进的双策略种群协同蚁群算法(Double-Strategies Co-Evolutionary Ant Colony System,DC-ACS)。利用改进蚁群算法对Solomon数据集的C105算例进行了求解,在4个优化目标上分别取得最优解为937.94 km、4961.48元、4081.78元和7500.87元,证明了本研究提出的...
Saved in:
Published in | 智慧农业(中英文) Vol. 3; no. 3; pp. 139 - 151 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Chinese |
Published |
中国农业科学院农业信息研究所
30.07.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2096-8094 |
DOI | 10.12133/j.smartag.2021.3.3.202108-SA004 |
Cover
Summary: | 针对农业供应链的运输环节中生鲜农产品配送模型存在的速度恒定、碳排放计算方法单一的问题,本研究结合路网时变特征和新的多车型碳排放计算方法,提出了考虑配送距离、多车型碳排放量、货物损耗和车辆固定成本等4个优化目标的生鲜农产品配送路径优化模型;并根据模型特点提出了一种改进的双策略种群协同蚁群算法(Double-Strategies Co-Evolutionary Ant Colony System,DC-ACS)。利用改进蚁群算法对Solomon数据集的C105算例进行了求解,在4个优化目标上分别取得最优解为937.94 km、4961.48元、4081.78元和7500.87元,证明了本研究提出的模型的有效性。在模型有效的基础上,通过试验结果证明,改进蚁群算法比基本蚁群算法在4个优化目标上的配送总成本平均降低幅度超过14%,证明改进蚁群算法更具有优越性。使用改进蚁群算法对集中、随机和混合3种不同分布的大规模算例进行求解,3种分布上分别求得最优总成本为19,939.53、24,095.00和24,397.58元。综上所述,所提模型和算法可以为冷链物流企业的城市配送路径决策提供良好的参考依据,对完善智慧农业供应链的配送路径优化模型和优化方法提供了新的思路,为企业进一步扩大规模提供了参考。 |
---|---|
ISSN: | 2096-8094 |
DOI: | 10.12133/j.smartag.2021.3.3.202108-SA004 |