Electronic and transport properties of V-shaped defect zigzag MoS2 nanoribbons
Based on the nonequilibrium Green's function (NEGF) in combination with density functional theory (DFT) calcu- lations, we study the electronic structures and transport properties of zigzag MoS2 nanoribbons (ZMNRs) with V-shaped vacancy defects on the edge. The vacancy formation energy results show...
Saved in:
Published in | 中国物理B:英文版 no. 4; pp. 557 - 561 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.04.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/23/4/047307 |
Cover
Summary: | Based on the nonequilibrium Green's function (NEGF) in combination with density functional theory (DFT) calcu- lations, we study the electronic structures and transport properties of zigzag MoS2 nanoribbons (ZMNRs) with V-shaped vacancy defects on the edge. The vacancy formation energy results show that the zigzag vacancy is easier to create on the edge of ZMNR than the armchair vacancy. Both of the defects can make the electronic band structures of ZMNRs change from metal to semiconductor. The calculations of electronic transport properties depict that the currents drop off clearly and rectification ratios increase in the defected systems. These effects would open up possibilities for their applications in novel nanoelectronic devices. |
---|---|
Bibliography: | transport property, zigzag MoS2 nanoribbons, V-shaped defect, first-principles 11-5639/O4 Based on the nonequilibrium Green's function (NEGF) in combination with density functional theory (DFT) calcu- lations, we study the electronic structures and transport properties of zigzag MoS2 nanoribbons (ZMNRs) with V-shaped vacancy defects on the edge. The vacancy formation energy results show that the zigzag vacancy is easier to create on the edge of ZMNR than the armchair vacancy. Both of the defects can make the electronic band structures of ZMNRs change from metal to semiconductor. The calculations of electronic transport properties depict that the currents drop off clearly and rectification ratios increase in the defected systems. These effects would open up possibilities for their applications in novel nanoelectronic devices. |
ISSN: | 1674-1056 2058-3834 |
DOI: | 10.1088/1674-1056/23/4/047307 |