Strong flux pinning enhancement in YBa2Cu3O7-x films by embedded BaZrO3 and BaTiO3 nanoparticles

YBa2Cu3O7-x (YBCO) films with embedded BaZrO3 and BaTiO3 nanoparticles were fabricated by metalorganic deposition using trifluoroacetates (TFA-MOD). Both X-ray diffraction and transmission electron microscopy revealed that these BaZrO3 and BaTiO3 nanoparticles had random orientations and were distri...

Full description

Saved in:
Bibliographic Details
Published in中国物理B:英文版 no. 7; pp. 484 - 488
Main Author 丁发柱 古宏伟 张 腾 王洪艳 屈 飞 邱清泉 戴少涛 彭星煜
Format Journal Article
LanguageEnglish
Published 01.07.2013
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/22/7/077401

Cover

More Information
Summary:YBa2Cu3O7-x (YBCO) films with embedded BaZrO3 and BaTiO3 nanoparticles were fabricated by metalorganic deposition using trifluoroacetates (TFA-MOD). Both X-ray diffraction and transmission electron microscopy revealed that these BaZrO3 and BaTiO3 nanoparticles had random orientations and were distributed stochastically in the YBCO matrix. The unique combined microstructure enhances the critical current density (Jc) of the BaZrO3/BaTiO3 doped-YBCO films, while keeping the critical transition temperature (Tc) close to that in the pure YBCO films. These results indicate that BaZrO3 and BaTiO3 nanoparticles provide strong flux pinning in YBCO films.
Bibliography:Ding Fa-Zhu, Gu Hong-Wei, Zhang Teng, Wang Hong-Yan, Qu Fei, Qiu Qing-Quan, Dai Shao-Tao,Peng Xing-Yu Key Laboratory of Applied Superconductivity, Chinese Academy of Sciences, Beijing 100190, China Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
YBa2Cu3O7-x (YBCO) films with embedded BaZrO3 and BaTiO3 nanoparticles were fabricated by metalorganic deposition using trifluoroacetates (TFA-MOD). Both X-ray diffraction and transmission electron microscopy revealed that these BaZrO3 and BaTiO3 nanoparticles had random orientations and were distributed stochastically in the YBCO matrix. The unique combined microstructure enhances the critical current density (Jc) of the BaZrO3/BaTiO3 doped-YBCO films, while keeping the critical transition temperature (Tc) close to that in the pure YBCO films. These results indicate that BaZrO3 and BaTiO3 nanoparticles provide strong flux pinning in YBCO films.
11-5639/O4
BaZrO3 and BaTiO3 nanoparticles;flux pinning;metalorganic deposition using trifluoroacetates
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/22/7/077401