Low-order Boussinesq models based on coordinate series expansions

We derive weakly dispersive Boussinesq equations using a $\unicode[STIX]{x1D70E}$ coordinate for the vertical direction, employing a series expansion in powers of $\unicode[STIX]{x1D70E}$ . We restrict attention initially to the case of constant still-water depth $h$ in order to simplify subsequent...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 896
Main Author Kirby, James T.
Format Journal Article
LanguageEnglish
Published Cambridge Cambridge University Press 10.08.2020
Subjects
Online AccessGet full text
ISSN0022-1120
1469-7645
DOI10.1017/jfm.2020.376

Cover

More Information
Summary:We derive weakly dispersive Boussinesq equations using a $\unicode[STIX]{x1D70E}$ coordinate for the vertical direction, employing a series expansion in powers of $\unicode[STIX]{x1D70E}$ . We restrict attention initially to the case of constant still-water depth $h$ in order to simplify subsequent analysis, and consider equations based on expansions about the bottom elevation $\unicode[STIX]{x1D70E}=0$ , and then about a reference elevation $\unicode[STIX]{x1D70E}_{\unicode[STIX]{x1D6FC}}$ in order to improve linear dispersion properties. We use a perturbation analysis, suggested recently by Madsen & Fuhrman ( J. Fluid Mech. , vol. 889, 2020, A38), to show that the resulting models are not subject to the trough instability studied there. A similar analysis is performed to develop a model for interfacial waves in a two-layer fluid, with comparable results. We argue, by extension, that a necessary condition for eliminating trough instabilities is that the model’s nonlinear dispersive terms should not contain still-water depth $h$ and surface displacement $\unicode[STIX]{x1D702}$ separately.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2020.376