Quasi‐isometric embeddings of C0(K,X)$C_{0}(K, X)$ spaces which induce isometries whenever X$X$ is a Hilbert space
Suppose that K$K$ and S$S$ are locally compact Hausdorff spaces and X$X$ is a Hilbert space. It is proven that if there exist real numbers M≥1$M \ge 1$, L≥0$L \ge 0$ and a map T$T$ from C0(K,X)$C_{0}(K,X)$ to C0(S,X)$C_{0}(S,X)$ satisfying 1M∥f−g∥−L≤∥T(f)−T(g)∥≤M∥f−g∥+L,$$\begin{equation*} \frac{1}{...
Saved in:
Published in | Mathematische Nachrichten Vol. 298; no. 9; pp. 2975 - 2985 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.09.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0025-584X 1522-2616 |
DOI | 10.1002/mana.12033 |
Cover
Summary: | Suppose that K$K$ and S$S$ are locally compact Hausdorff spaces and X$X$ is a Hilbert space. It is proven that if there exist real numbers M≥1$M \ge 1$, L≥0$L \ge 0$ and a map T$T$ from C0(K,X)$C_{0}(K,X)$ to C0(S,X)$C_{0}(S,X)$ satisfying
1M∥f−g∥−L≤∥T(f)−T(g)∥≤M∥f−g∥+L,$$\begin{equation*} \frac{1}{M}\Vert f-g\Vert -L\le \Vert T(f)-T(g)\Vert \le M\Vert f-g\Vert +L,\ \end{equation*}$$for every f$f$ and g$g$ in C0(K,X)${C}_{0}(K,X)$, then there are a locally compact subset S0$S_0$ of S$S$ and a proper continuous function φ$\varphi$ of S0$S_0$ onto K$K$, on the assumption that
M2<27−23.$$\begin{equation*} M^{2}< \frac{2\sqrt {7}-2}{3}. \end{equation*}$$
In this case, as an immediate consequence, φ$\varphi$ generates a linear isometry of C0(K)$C_{0}(K)$ into C0(S0)$C_{0}(S_0)$. Even in the Lipschitz case (L=0$L=0$), this result is the first nonlinear vector generalization of a classical Jarosz theorem (1984) concerning the into linear isomorphisms of spaces of continuous functions on locally compact Hausdorff spaces. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.12033 |