Early alterations of RNA metabolism and splicing from adult corticospinal neurons in an ALS mouse model

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease clinically defined as the combined degeneration of corticospinal and corticobulbar neurons (CSN), and bulbar and spinal motor neurons (MN). A growing body of evidence points to the motor cortex, where CSN are located, as...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Marques, Christine, Fischer, Mathieu, Keime, Celine, Burg, Thibaut, Brunet, Aurore, Scekic-Zahirovic, Jelena, Rouaux, Caroline
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 12.06.2019
Cold Spring Harbor Laboratory
Edition1.1
Subjects
Online AccessGet full text
ISSN2692-8205
2692-8205
DOI10.1101/667733

Cover

More Information
Summary:Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease clinically defined as the combined degeneration of corticospinal and corticobulbar neurons (CSN), and bulbar and spinal motor neurons (MN). A growing body of evidence points to the motor cortex, where CSN are located, as the potential initiation site of ALS. However, little is known about the spatiotemporal dynamics of CSN degeneration and the molecular pathways involved. Here, we show in the Sod1G86R mouse model of ALS that CSN loss precedes MN degeneration and that CSN and MN degenerations are somatotopically related, highlighting the relevance of CSN to ALS onset and progression. To gain insights into the molecular mechanisms that selectively trigger CSN degeneration, we purified CSN from the motor and somatosensory cortex of adult mice and analysed their transcriptome from presymptomatic ages to disease end-stage. Significant RNA metabolism and splicing alterations, novel in the context of Sod1 mutation, were identified, including mis-splicing events that largely trigger genes involved in neuronal functions. Together, the data indicate that CSN dysfunction and degeneration upon mutant Sod1 expression involve alterations of RNA metabolism and splicing, emphasizing shared mechanisms across various ALS-related genes. Footnotes * https://www.ebi.ac.uk/arrayexpress/experiments/EMTAB-7876/
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2692-8205
2692-8205
DOI:10.1101/667733