Pressure–flow responses to exercise in aortic stenosis, mitral regurgitation and diastolic dysfunction

BackgroundHaemodynamic exercise testing is important for evaluating patients with dyspnoea on exertion and preserved ejection fraction. Despite very different pathologies, patients with pressure (aortic stenosis (AS)) and volume (mitral regurgitation (MR)) overload and diastolic dysfunction after re...

Full description

Saved in:
Bibliographic Details
Published inHeart (British Cardiac Society) Vol. 108; no. 23; pp. 1895 - 1903
Main Authors Andersen, Mads J, Wolsk, Emil, Bakkestrøm, Rine, Christensen, Nicolaj, Carter-Storch, Rasmus, Omar, Massar, Dahl, Jordi S, Frederiksen, Peter H, Borlaug, Barry, Gustafsson, Finn, Hassager, Christian, Moller, Jacob E
Format Journal Article
LanguageEnglish
Published London BMJ Publishing Group Ltd and British Cardiovascular Society 01.12.2022
BMJ Publishing Group LTD
BMJ Publishing Group
SeriesOriginal research
Subjects
Online AccessGet full text
ISSN1355-6037
1468-201X
1468-201X
DOI10.1136/heartjnl-2022-321204

Cover

More Information
Summary:BackgroundHaemodynamic exercise testing is important for evaluating patients with dyspnoea on exertion and preserved ejection fraction. Despite very different pathologies, patients with pressure (aortic stenosis (AS)) and volume (mitral regurgitation (MR)) overload and diastolic dysfunction after recent acute myocardial infarction (AMI) reach similar filling pressure levels with exercise. The pressure–flow relationships (the association between change in cardiac output (∆CO) and change in pulmonary arterial wedge pressure (∆PAWP) may provide insight into haemodynamic adaptation to exercise in these groups.Methods and resultsOne hundred sixty-eight subjects aged >50 years with a left ventricular ejection fraction of ≥50% underwent invasive exercise testing. They were enrolled in four different studies: AS (40 patients), AMI (52 patients), MR (43 patients) and 33 healthy subjects. Haemodynamic data were measured at rest, at 25 W, 75 W and at peak exercise. In all groups, PAWP increased with exercise. The greatest increase was observed in patients with AMI (from 12.7±3.9 mm Hg to 33.1±8.2 mm Hg, p<0.0001) and patients with AS (from 11.8±3.9 mm Hg to 31.4±6.1 mm Hg, p<0.0001), and the smallest was observed in healthy subjects (from 8.3±2.4 mm Hg to 21.1±7.5 mm Hg, p<0.0001). In all groups, the relative pressure increase was greatest at the beginning of the exercise. CO increased most in healthy patients (from 5.3±1.1 to 16.0±3.0 L/min, p<0.0001) and least in patients with AS (from 5.3±1.2 L/min to 12.4±2.6 L/min, p<0.0001). The pressure–flow relationships (∆PAWP/∆CO) and differed among groups (p=0.02). In all groups, the pressure–flow relationship was steepest in the initial phase of the exercise test. The AMI and AS groups (2.3±1.2 mm Hg/L/min and 3.0±1.3 mm Hg/L/min, AMI and AS, respectively) had the largest overall pressure–flow relationship; the healthy group had the smallest initially and at peak exercise (1.3±1.1 mm Hg/L/min) followed by MR group (1.9±1.4 mm Hg/L/min).ConclusionThe pressure–flow relationship was steepest in the initial phase of the exercise test in all groups. The pressure–flow relationship differs between groups.Trial registration numbers NCT01974557, NCT01046838, NCT02961647 and NCT02395107.
Bibliography:Original research
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1355-6037
1468-201X
1468-201X
DOI:10.1136/heartjnl-2022-321204