TMPRSS2-ERG confers resistance to antiandrogens: mechanism and therapeutic implications

Approximately 50% of prostate cancer (PCa) patients harbor fusions involving the and genes. Despite this, tailored therapies targeting the fused gene, , remain undeveloped. Our study analyzed biopsy samples from two clinical trials assessing the efficacies of androgen receptor (AR) signaling inhibit...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Sekar, Arunachalam, Chatterjee, Rishita, Selvadurai, Boobash Raj, Pal, Lipika R, Verma, Aakanksha, Nataraj, Nishanth Belugali, Garcia, Diana Drago, Giri, Suvendu, Genna, Alessandro, Karatekin, Feride, Gupta, Nitin, Zerbib, Mirie, Vinik, Yaron, Avioz, Tamir, Weizman, Eviatar, David, Eyal, Schaffer, Alejändro A, Pan, Yunqian, Huang, Haojie, van Weerden, Wytske M, Corey, Eva, Hunt, Hazel, Greenstein, Andrew E, Blecher-Gonen, Ronnie, Oren, Roni, Afek, Ariel, Amit, Ido, Lev, Sima, Ku, Anson, Kartal, Sumeyra, Bright, Jack R, Lis, Rosina T, Dahut, William L, Sowalsky, Adam G, Ruppin, Eytan, Yarden, Yosef
Format Journal Article Paper
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 20.01.2025
Cold Spring Harbor Laboratory
Edition1.1
Subjects
Online AccessGet full text
ISSN2692-8205
2692-8205
DOI10.1101/2025.01.17.633582

Cover

Abstract Approximately 50% of prostate cancer (PCa) patients harbor fusions involving the and genes. Despite this, tailored therapies targeting the fused gene, , remain undeveloped. Our study analyzed biopsy samples from two clinical trials assessing the efficacies of androgen receptor (AR) signaling inhibitors (ARSIs). The results revealed that promotes resistance to ARSIs and is associated with elevated levels of the glucocorticoid receptor (GR). Subsequent assays showed that GR directly interacts with tERG, alleviates allosteric autoinhibition and prevents chemotherapy-induced tERG degradation. In PCa models, either inhibiting GR or lowering cortisol levels suppressed tumor growth in tERG-positive models, but not in fusion-negative models. In addition, patient-derived fusion-positive xenografts displayed enhanced sensitivity to combined GR and AR inhibitors. Collectively, these findings highlight as a new biomarker and propose that simultaneous inhibition of GR and AR may specifically benefit -positine patients. However, GR stimulatory corticosteroid therapies may not be advisable for this patient subgroup.
AbstractList Approximately 50% of prostate cancer (PCa) patients harbor fusions involving the TMPRSS2 and ERG genes. Despite this, tailored therapies targeting the fused gene, tERG, remain undeveloped. Our study analyzed biopsy samples from two clinical trials assessing the efficacies of androgen receptor (AR) signaling inhibitors (ARSIs). The results revealed that tERG promotes resistance to ARSIs and is associated with elevated levels of the glucocorticoid receptor (GR). Subsequent assays showed that GR directly interacts with tERG, alleviates allosteric autoinhibition and prevents chemotherapy-induced tERG degradation. In PCa models, either inhibiting GR or lowering cortisol levels suppressed tumor growth in tERG-positive models, but not in fusion-negative models. In addition, patient-derived fusion-positive xenografts displayed enhanced sensitivity to combined GR and AR inhibitors. Collectively, these findings highlight TMPRSS2-ERG as a new biomarker and propose that simultaneous inhibition of GR and AR may specifically benefit tERG-positine patients. However, GR stimulatory corticosteroid therapies may not be advisable for this patient subgroup.Competing Interest StatementE.C. obtained funding from Genentech, Sanofi, AbbVie, Astra Zeneca, Foghorn Pharmaceuticals, Kronos Bio, MacroGenics, Janssen Research, Bayer Pharmaceuticals, Forma Pharmaceuticals, Gilead and Zenith Epigenetics and is consultant of DotQuant. A.G.S. reports that the National Cancer Institute (NCI) has a Cooperative Research and Development Agreement (CRADA) with Astellas. Resources are provided by this CRADA to the NCI. A.G.S. received no personal funding from this CRADA but is the primary investigator of the CRADA. W.V.W. obtained research funding from AstraZeneca, Bayer AG and Sanofi. H.H. and is an employee and shareholder of Corcept Therapeutics. A.E.G. is a shareholder of Corcept Therapeutics Inc. and Exelixis Inc. All other authors declare that they have no conflicts of interest relevant to the herein reported study.
Approximately 50% of prostate cancer (PCa) patients harbor fusions involving the TMPRSS2 and ERG genes. Despite this, tailored therapies targeting the fused gene, tERG, remain undeveloped. Our study analyzed biopsy samples from two clinical trials assessing the efficacies of androgen receptor (AR) signaling inhibitors (ARSIs). The results revealed that tERG promotes resistance to ARSIs and is associated with elevated levels of the glucocorticoid receptor (GR). Subsequent assays showed that GR directly interacts with tERG, alleviates allosteric autoinhibition and prevents chemotherapy-induced tERG degradation. In PCa models, either inhibiting GR or lowering cortisol levels suppressed tumor growth in tERG-positive models, but not in fusion-negative models. In addition, patient-derived fusion-positive xenografts displayed enhanced sensitivity to combined GR and AR inhibitors. Collectively, these findings highlight TMPRSS2-ERG as a new biomarker and propose that simultaneous inhibition of GR and AR may specifically benefit tERG-positine patients. However, GR stimulatory corticosteroid therapies may not be advisable for this patient subgroup.
Approximately 50% of prostate cancer (PCa) patients harbor fusions involving the TMPRSS2 and ERG genes. Despite this, tailored therapies targeting the fused gene, tERG , remain undeveloped. Our study analyzed biopsy samples from two clinical trials assessing the efficacies of androgen receptor (AR) signaling inhibitors (ARSIs). The results revealed that tERG promotes resistance to ARSIs and is associated with elevated levels of the glucocorticoid receptor (GR). Subsequent assays showed that GR directly interacts with tERG, alleviates allosteric autoinhibition and prevents chemotherapy-induced tERG degradation. In PCa models, either inhibiting GR or lowering cortisol levels suppressed tumor growth in tERG-positive models, but not in fusion-negative models. In addition, patient-derived fusion-positive xenografts displayed enhanced sensitivity to combined GR and AR inhibitors. Collectively, these findings highlight TMPRSS2-ERG as a new biomarker and propose that simultaneous inhibition of GR and AR may specifically benefit tERG -positine patients. However, GR stimulatory corticosteroid therapies may not be advisable for this patient subgroup.Approximately 50% of prostate cancer (PCa) patients harbor fusions involving the TMPRSS2 and ERG genes. Despite this, tailored therapies targeting the fused gene, tERG , remain undeveloped. Our study analyzed biopsy samples from two clinical trials assessing the efficacies of androgen receptor (AR) signaling inhibitors (ARSIs). The results revealed that tERG promotes resistance to ARSIs and is associated with elevated levels of the glucocorticoid receptor (GR). Subsequent assays showed that GR directly interacts with tERG, alleviates allosteric autoinhibition and prevents chemotherapy-induced tERG degradation. In PCa models, either inhibiting GR or lowering cortisol levels suppressed tumor growth in tERG-positive models, but not in fusion-negative models. In addition, patient-derived fusion-positive xenografts displayed enhanced sensitivity to combined GR and AR inhibitors. Collectively, these findings highlight TMPRSS2-ERG as a new biomarker and propose that simultaneous inhibition of GR and AR may specifically benefit tERG -positine patients. However, GR stimulatory corticosteroid therapies may not be advisable for this patient subgroup.
Approximately 50% of prostate cancer (PCa) patients harbor fusions involving the and genes. Despite this, tailored therapies targeting the fused gene, , remain undeveloped. Our study analyzed biopsy samples from two clinical trials assessing the efficacies of androgen receptor (AR) signaling inhibitors (ARSIs). The results revealed that promotes resistance to ARSIs and is associated with elevated levels of the glucocorticoid receptor (GR). Subsequent assays showed that GR directly interacts with tERG, alleviates allosteric autoinhibition and prevents chemotherapy-induced tERG degradation. In PCa models, either inhibiting GR or lowering cortisol levels suppressed tumor growth in tERG-positive models, but not in fusion-negative models. In addition, patient-derived fusion-positive xenografts displayed enhanced sensitivity to combined GR and AR inhibitors. Collectively, these findings highlight as a new biomarker and propose that simultaneous inhibition of GR and AR may specifically benefit -positine patients. However, GR stimulatory corticosteroid therapies may not be advisable for this patient subgroup.
Approximately 50% of prostate cancer (PCa) patients harbor fusions involving the TMPRSS2 and ERG genes. Despite this, tailored therapies targeting the fused gene, tERG , remain undeveloped. Our study analyzed biopsy samples from two clinical trials assessing the efficacies of androgen receptor (AR) signaling inhibitors (ARSIs). The results revealed that tERG promotes resistance to ARSIs and is associated with elevated levels of the glucocorticoid receptor (GR). Subsequent assays showed that GR directly interacts with tERG, alleviates allosteric autoinhibition and prevents chemotherapy-induced tERG degradation. In PCa models, either inhibiting GR or lowering cortisol levels suppressed tumor growth in tERG-positive models, but not in fusion-negative models. In addition, patient-derived fusion-positive xenografts displayed enhanced sensitivity to combined GR and AR inhibitors. Collectively, these findings highlight TMPRSS2-ERG as a new biomarker and propose that simultaneous inhibition of GR and AR may specifically benefit tERG -positine patients. However, GR stimulatory corticosteroid therapies may not be advisable for this patient subgroup.
Author Genna, Alessandro
Weizman, Eviatar
Vinik, Yaron
Garcia, Diana Drago
Hunt, Hazel
Pal, Lipika R
Karatekin, Feride
Afek, Ariel
Dahut, William L
Ku, Anson
Ruppin, Eytan
Verma, Aakanksha
Gupta, Nitin
Corey, Eva
Amit, Ido
Lis, Rosina T
Nataraj, Nishanth Belugali
Oren, Roni
Sekar, Arunachalam
David, Eyal
Chatterjee, Rishita
Selvadurai, Boobash Raj
Kartal, Sumeyra
Blecher-Gonen, Ronnie
Yarden, Yosef
Greenstein, Andrew E
Giri, Suvendu
Avioz, Tamir
Zerbib, Mirie
Pan, Yunqian
Schaffer, Alejändro A
van Weerden, Wytske M
Bright, Jack R
Huang, Haojie
Lev, Sima
Sowalsky, Adam G
Author_xml – sequence: 1
  givenname: Arunachalam
  surname: Sekar
  fullname: Sekar, Arunachalam
– sequence: 2
  givenname: Rishita
  surname: Chatterjee
  fullname: Chatterjee, Rishita
– sequence: 3
  givenname: Boobash Raj
  surname: Selvadurai
  fullname: Selvadurai, Boobash Raj
– sequence: 4
  givenname: Lipika R
  surname: Pal
  fullname: Pal, Lipika R
– sequence: 5
  givenname: Aakanksha
  surname: Verma
  fullname: Verma, Aakanksha
– sequence: 6
  givenname: Nishanth Belugali
  surname: Nataraj
  fullname: Nataraj, Nishanth Belugali
– sequence: 7
  givenname: Diana Drago
  surname: Garcia
  fullname: Garcia, Diana Drago
– sequence: 8
  givenname: Suvendu
  surname: Giri
  fullname: Giri, Suvendu
– sequence: 9
  givenname: Alessandro
  surname: Genna
  fullname: Genna, Alessandro
– sequence: 10
  givenname: Feride
  surname: Karatekin
  fullname: Karatekin, Feride
– sequence: 11
  givenname: Nitin
  surname: Gupta
  fullname: Gupta, Nitin
– sequence: 12
  givenname: Mirie
  surname: Zerbib
  fullname: Zerbib, Mirie
– sequence: 13
  givenname: Yaron
  surname: Vinik
  fullname: Vinik, Yaron
– sequence: 14
  givenname: Tamir
  surname: Avioz
  fullname: Avioz, Tamir
– sequence: 15
  givenname: Eviatar
  surname: Weizman
  fullname: Weizman, Eviatar
– sequence: 16
  givenname: Eyal
  surname: David
  fullname: David, Eyal
– sequence: 17
  givenname: Alejändro A
  surname: Schaffer
  fullname: Schaffer, Alejändro A
– sequence: 18
  givenname: Yunqian
  surname: Pan
  fullname: Pan, Yunqian
– sequence: 19
  givenname: Haojie
  surname: Huang
  fullname: Huang, Haojie
– sequence: 20
  givenname: Wytske M
  surname: van Weerden
  fullname: van Weerden, Wytske M
– sequence: 21
  givenname: Eva
  surname: Corey
  fullname: Corey, Eva
– sequence: 22
  givenname: Hazel
  surname: Hunt
  fullname: Hunt, Hazel
– sequence: 23
  givenname: Andrew E
  surname: Greenstein
  fullname: Greenstein, Andrew E
– sequence: 24
  givenname: Ronnie
  surname: Blecher-Gonen
  fullname: Blecher-Gonen, Ronnie
– sequence: 25
  givenname: Roni
  surname: Oren
  fullname: Oren, Roni
– sequence: 26
  givenname: Ariel
  surname: Afek
  fullname: Afek, Ariel
– sequence: 27
  givenname: Ido
  surname: Amit
  fullname: Amit, Ido
– sequence: 28
  givenname: Sima
  surname: Lev
  fullname: Lev, Sima
– sequence: 29
  givenname: Anson
  surname: Ku
  fullname: Ku, Anson
– sequence: 30
  givenname: Sumeyra
  surname: Kartal
  fullname: Kartal, Sumeyra
– sequence: 31
  givenname: Jack R
  surname: Bright
  fullname: Bright, Jack R
– sequence: 32
  givenname: Rosina T
  surname: Lis
  fullname: Lis, Rosina T
– sequence: 33
  givenname: William L
  surname: Dahut
  fullname: Dahut, William L
– sequence: 34
  givenname: Adam G
  surname: Sowalsky
  fullname: Sowalsky, Adam G
– sequence: 35
  givenname: Eytan
  surname: Ruppin
  fullname: Ruppin, Eytan
– sequence: 36
  givenname: Yosef
  surname: Yarden
  fullname: Yarden, Yosef
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40568162$$D View this record in MEDLINE/PubMed
BookMark eNpdUU1v1TAQtFARLa_9AVxQpF645LFrJ47dS4WqUpCKQP1Qj5aTbPpcJXawkwr-PakeLS2nXWlmZ0azb9mOD54Ye4ewRgT8yIGXa8A1VmspRKn4K7bHpea54lDuPNt32UFKdwDAtURRFW_YbgGlVCj5Hru5-vbj4vKS56cXZ1kTfEcxZZGSS5P1DWVTyKyfnPVtDLfk01E2ULOx3qVhAdps2lC0I82TazI3jL1r7OSCT_vsdWf7RAd_54pdfz69OvmSn38_-3ry6Tyv-eKft6pTdVOCBmx5AdYKCx1JErouJFW61LJWWNUdgdWohVULtyiw7aAQWJJYseOt7jjXA7UN-Sna3ozRDTb-NsE68xLxbmNuw71BjhrUIrliH7YKtQvxl7t_un0o2AAarMy24H_UMYafM6XJDC411PfWU5iTEZwXXAolcKEe_ke9C3P0SxVmyV1xWWl4EHz_PP2T9eN_xB-UH5Kt
ContentType Journal Article
Paper
Copyright 2025. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2025.01.17.633582v1
2025, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2025. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2025.01.17.633582v1
– notice: 2025, Posted by Cold Spring Harbor Laboratory
DBID NPM
7X8
FX.
5PM
DOI 10.1101/2025.01.17.633582
DatabaseName PubMed
MEDLINE - Academic
bioRxiv
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID PMC12190819
2025.01.17.633582v1
40568162
Genre Journal Article
Preprint
Working Paper/Pre-Print
GroupedDBID 8FE
8FH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
CCPQU
HCIFZ
LK8
M7P
NPM
NQS
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RHI
7X8
PUEGO
FX.
5PM
ID FETCH-LOGICAL-b2162-d8f8bc50901d240aa3a0fe6e39b46e79596b817bfe0a9193a8509441df04315e3
IEDL.DBID FX.
ISSN 2692-8205
IngestDate Thu Aug 21 18:34:15 EDT 2025
Sat Jan 25 14:40:50 EST 2025
Fri Sep 05 15:49:42 EDT 2025
Fri Jul 25 09:17:59 EDT 2025
Mon Jul 21 05:37:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords ETS family
TMPRSS2 fusions
prostate cancer
corticosteroids
GR antagonists
Language English
License The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b2162-d8f8bc50901d240aa3a0fe6e39b46e79596b817bfe0a9193a8509441df04315e3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ObjectType-Working Paper/Pre-Print-3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interest Statement: E.C. obtained funding from Genentech, Sanofi, AbbVie, Astra Zeneca, Foghorn Pharmaceuticals, Kronos Bio, MacroGenics, Janssen Research, Bayer Pharmaceuticals, Forma Pharmaceuticals, Gilead and Zenith Epigenetics and is consultant of DotQuant. A.G.S. reports that the National Cancer Institute (NCI) has a Cooperative Research and Development Agreement (CRADA) with Astellas. Resources are provided by this CRADA to the NCI. A.G.S. received no personal funding from this CRADA but is the primary investigator of the CRADA. W.V.W. obtained research funding from AstraZeneca, Bayer AG and Sanofi. H.H. and is an employee and shareholder of Corcept Therapeutics. A.E.G. is a shareholder of Corcept Therapeutics Inc. and Exelixis Inc. All other authors declare that they have no conflicts of interest relevant to the herein reported study.
OpenAccessLink https://www.biorxiv.org/content/10.1101/2025.01.17.633582
PMID 40568162
PQID 3157267902
PQPubID 2050091
PageCount 41
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12190819
biorxiv_primary_2025_01_17_633582
proquest_miscellaneous_3224263831
proquest_journals_3157267902
pubmed_primary_40568162
PublicationCentury 2000
PublicationDate 2025-Jan-20
20250120
PublicationDateYYYYMMDD 2025-01-20
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-Jan-20
  day: 20
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationTitleAlternate bioRxiv
PublicationYear 2025
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References Puhr (2025.01.17.633582v1.21) 2018; 24
Isikbay (2025.01.17.633582v1.22) 2014; 5
Centenera (2025.01.17.633582v1.46) 2015; 22
Sandoval (2025.01.17.633582v1.15) 2018; 71
(2025.01.17.633582v1.1) 2015; 163
Romero-Laorden (2025.01.17.633582v1.61) 2018; 119
Hollenhorst, McIntosh, Graves (2025.01.17.633582v1.42) 2011; 80
Teply, Luber, Denmeade, Antonarakis (2025.01.17.633582v1.63) 2016; 19
Blecher-Gonen (2025.01.17.633582v1.70) 2013; 8
Nguyen (2025.01.17.633582v1.71) 2017; 77
Robinson (2025.01.17.633582v1.4) 2015; 161
Grasso (2025.01.17.633582v1.3) 2012; 487
Khosh Kish (2025.01.17.633582v1.52) 2022; 23
Xiao (2025.01.17.633582v1.54) 2022; 601
Gerber, Newton, Sasse (2025.01.17.633582v1.48) 2021; 296
Bose (2025.01.17.633582v1.19) 2017; 546
Ndibe, Wang, Sonpavde (2025.01.17.633582v1.62) 2015; 16
Gan (2025.01.17.633582v1.17) 2015; 59
Germain (2025.01.17.633582v1.47) 2023; 20
Benjamini, Hochberg (2025.01.17.633582v1.68) 1995; 57
Li (2025.01.17.633582v1.24) 2017; 6
Chen (2025.01.17.633582v1.69) 2013; 14
Pellecchia (2025.01.17.633582v1.40) 2012; 1
Teo, Scher (2025.01.17.633582v1.60) 2018; 119
Perner (2025.01.17.633582v1.6) 2007; 31
Kron (2025.01.17.633582v1.11) 2017; 49
Shah (2025.01.17.633582v1.23) 2017; 6
Yu (2025.01.17.633582v1.12) 2010; 17
Srivastava (2025.01.17.633582v1.25) 2019; 29
Regan (2025.01.17.633582v1.50) 2013; 110
Zhao (2025.01.17.633582v1.29) 2022; 28
Hollenhorst, Shah, Hopkins, Graves (2025.01.17.633582v1.14) 2007; 21
Montgomery (2025.01.17.633582v1.28) 2015; 67
Navone (2025.01.17.633582v1.56) 2018; 78
Frank, Ortlund, Liu (2025.01.17.633582v1.43) 2021; 49
Fleseriu, Petersenn (2025.01.17.633582v1.55) 2015; 18
Lundberg (2025.01.17.633582v1.33) 2023; 83
Tomlins (2025.01.17.633582v1.38) 2008; 10
Paulo (2025.01.17.633582v1.5) 2012; 51
Hollenhorst, Paul, Ferris, Graves (2025.01.17.633582v1.39) 2011; 1
Wu (2025.01.17.633582v1.10) 2013; 73
Quigley (2025.01.17.633582v1.32) 2018; 175
Chai (2025.01.17.633582v1.41) 2023; 44
Srivastava (2025.01.17.633582v1.58) 2019; 29
Bakour, Moriarty, Moore, Robson, Annett (2025.01.17.633582v1.64) 2021; 13
An (2025.01.17.633582v1.18) 2015; 59
Clark (2025.01.17.633582v1.16) 2007; 26
Oakley, Cidlowski (2025.01.17.633582v1.37) 1993; 3
Lorenzin, Demichelis (2025.01.17.633582v1.51) 2022; 14
Karzai (2025.01.17.633582v1.27) 2021; 27
Abida (2025.01.17.633582v1.65) 2024; 30
Donaldson, Petersen, Graves, McIntosh (2025.01.17.633582v1.8) 1996; 15
Sun (2025.01.17.633582v1.13) 2008; 27
Xie (2025.01.17.633582v1.34) 2015; 136
Yang (2025.01.17.633582v1.59) 2021; 21
Tomlins (2025.01.17.633582v1.2) 2005; 310
Liberzon (2025.01.17.633582v1.53) 2015; 1
Wilkinson (2025.01.17.633582v1.26) 2021; 80
Michnick, Ear, Manderson, Remy, Stefan (2025.01.17.633582v1.36) 2007; 6
Narayanan, Srinivas, Feldman (2025.01.17.633582v1.57) 2016; 13
Dobin (2025.01.17.633582v1.66) 2013; 29
Kirschke, Goswami, Southworth, Griffin, Agard (2025.01.17.633582v1.45) 2014; 157
Roudier (2025.01.17.633582v1.7) 2016; 76
Love, Huber, Anders (2025.01.17.633582v1.67) 2014; 15
Arora (2025.01.17.633582v1.20) 2013; 155
Hussain (2025.01.17.633582v1.30) 2018; 36
Sowalsky (2025.01.17.633582v1.31) 2018; 78
Hong (2025.01.17.633582v1.44) 2020; 79
Nhili (2025.01.17.633582v1.49) 2013; 41
Wei (2025.01.17.633582v1.9) 2010; 29
Puhr (2025.01.17.633582v1.35) 2018; 24
References_xml – volume: 157
  start-page: 1685
  year: 2014
  end-page: 97
  ident: 2025.01.17.633582v1.45
  article-title: Glucocorticoid receptor function regulated by coordinated action of the Hsp90 and Hsp70 chaperone cycles
  publication-title: Cell
– volume: 29
  start-page: 104
  year: 2019
  end-page: 117
  ident: 2025.01.17.633582v1.58
  article-title: ETS Proteins Bind with Glucocorticoid Receptors: Relevance for Treatment of Ewing Sarcoma
  publication-title: Cell Rep
– volume: 487
  start-page: 239
  year: 2012
  end-page: 43
  ident: 2025.01.17.633582v1.3
  article-title: The mutational landscape of lethal castration-resistant prostate cancer
  publication-title: Nature
– volume: 36
  start-page: 991
  year: 2018
  end-page: 999
  ident: 2025.01.17.633582v1.30
  article-title: Targeting Androgen Receptor and DNA Repair in Metastatic Castration-Resistant Prostate Cancer: Results From NCI 9012
  publication-title: J Clin Oncol
– volume: 8
  start-page: 539
  year: 2013
  end-page: 554
  ident: 2025.01.17.633582v1.70
  article-title: High-throughput chromatin immunoprecipitation for genome-wide mapping of in vivo protein-DNA interactions and epigenomic states
  publication-title: Nat Protoc
– volume: 155
  start-page: 1309
  year: 2013
  end-page: 22
  ident: 2025.01.17.633582v1.20
  article-title: Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade
  publication-title: Cell
– volume: 6
  year: 2017
  ident: 2025.01.17.633582v1.24
  article-title: Aberrant corticosteroid metabolism in tumor cells enables GR takeover in enzalutamide resistant prostate cancer
  publication-title: Elife
– volume: 136
  start-page: E27
  year: 2015
  end-page: 38
  ident: 2025.01.17.633582v1.34
  article-title: The expression of glucocorticoid receptor is negatively regulated by active androgen receptor signaling in prostate tumors
  publication-title: Int J Cancer
– volume: 30
  start-page: 1111
  year: 2024
  end-page: 1120
  ident: 2025.01.17.633582v1.65
  article-title: Phase I Study of ORIC-101, a Glucocorticoid Receptor Antagonist, in Combination with Enzalutamide in Patients with Metastatic Castration-resistant Prostate Cancer Progressing on Enzalutamide
  publication-title: Clin Cancer Res
– volume: 24
  start-page: 927
  year: 2018
  end-page: 938
  ident: 2025.01.17.633582v1.35
  article-title: The Glucocorticoid Receptor Is a Key Player for Prostate Cancer Cell Survival and a Target for Improved Antiandrogen Therapy
  publication-title: Clin Cancer Res
– volume: 10
  start-page: 177
  year: 2008
  end-page: 88
  ident: 2025.01.17.633582v1.38
  article-title: Role of the TMPRSS2-ERG gene fusion in prostate cancer
  publication-title: Neoplasia
– volume: 119
  start-page: 1041
  year: 2018
  end-page: 1043
  ident: 2025.01.17.633582v1.60
  article-title: Lessons from the SWITCH trial: changing glucocorticoids in the management of metastatic castration-resistant prostate cancer (mCRPC)
  publication-title: Br J Cancer
– volume: 51
  start-page: 240
  year: 2012
  end-page: 9
  ident: 2025.01.17.633582v1.5
  article-title: FLI1 is a novel ETS transcription factor involved in gene fusions in prostate cancer
  publication-title: Genes Chromosomes Cancer
– volume: 6
  start-page: e27861
  year: 2017
  ident: 2025.01.17.633582v1.23
  article-title: Regulation of the glucocorticoid receptor via a BET-dependent enhancer drives antiandrogen resistance in prostate cancer
  publication-title: eLife
– volume: 31
  start-page: 882
  year: 2007
  end-page: 8
  ident: 2025.01.17.633582v1.6
  article-title: TMPRSS2-ERG fusion prostate cancer: an early molecular event associated with invasion
  publication-title: Am J Surg Pathol
– volume: 73
  start-page: 6068
  year: 2013
  end-page: 79
  ident: 2025.01.17.633582v1.10
  article-title: ERG is a critical regulator of Wnt/LEF1 signaling in prostate cancer
  publication-title: Cancer Res
– volume: 175
  issue: 889
  year: 2018
  ident: 2025.01.17.633582v1.32
  article-title: Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer
  publication-title: Cell
– volume: 601
  start-page: 434
  year: 2022
  end-page: 439
  ident: 2025.01.17.633582v1.54
  article-title: Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer
  publication-title: Nature
– volume: 17
  start-page: 443
  year: 2010
  end-page: 54
  ident: 2025.01.17.633582v1.12
  article-title: An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression
  publication-title: Cancer Cell
– volume: 161
  start-page: 1215
  year: 2015
  end-page: 1228
  ident: 2025.01.17.633582v1.4
  article-title: Integrative clinical genomics of advanced prostate cancer
  publication-title: Cell
– volume: 1
  start-page: 1044
  year: 2011
  end-page: 1052
  ident: 2025.01.17.633582v1.39
  article-title: The ETS gene ETV4 is required for anchorage-independent growth and a cell proliferation gene expression program in PC3 prostate cells
  publication-title: Genes Cancer
– volume: 27
  start-page: 5348
  year: 2008
  end-page: 5353
  ident: 2025.01.17.633582v1.13
  article-title: TMPRSS2-ERG fusion, a common genomic alteration in prostate cancer activates C-MYC and abrogates prostate epithelial differentiation
  publication-title: Oncogene
– volume: 78
  start-page: 1262
  year: 2018
  end-page: 1282
  ident: 2025.01.17.633582v1.56
  article-title: Movember GAP1 PDX project: An international collection of serially transplantable prostate cancer patient-derived xenograft (PDX) models
  publication-title: Prostate
– volume: 41
  start-page: 125
  year: 2013
  end-page: 38
  ident: 2025.01.17.633582v1.49
  article-title: Targeting the DNA-binding activity of the human ERG transcription factor using new heterocyclic dithiophene diamidines
  publication-title: Nucleic Acids Res
– volume: 29
  start-page: 15
  year: 2013
  end-page: 21
  ident: 2025.01.17.633582v1.66
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
– volume: 27
  start-page: 429
  year: 2021
  end-page: 437
  ident: 2025.01.17.633582v1.27
  article-title: Sequential Prostate Magnetic Resonance Imaging in Newly Diagnosed High-risk Prostate Cancer Treated with Neoadjuvant Enzalutamide is Predictive of Therapeutic Response
  publication-title: Clin Cancer Res
– volume: 15
  start-page: 125
  year: 1996
  end-page: 134
  ident: 2025.01.17.633582v1.8
  article-title: Solution structure of the ETS domain from murine Ets-1: a winged helix-turn-helix DNA binding motif
  publication-title: The EMBO Journal
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: 2025.01.17.633582v1.68
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: Journal of the Royal Society Series B
– volume: 76
  start-page: 810
  year: 2016
  end-page: 822
  ident: 2025.01.17.633582v1.7
  article-title: Characterizing the molecular features of ERG-positive tumors in primary and castration resistant prostate cancer
  publication-title: The Prostate
– volume: 59
  start-page: 917
  year: 2015
  end-page: 30
  ident: 2025.01.17.633582v1.17
  article-title: SPOP Promotes Ubiquitination and Degradation of the ERG Oncoprotein to Suppress Prostate Cancer Progression
  publication-title: Mol Cell
– volume: 26
  start-page: 2667
  year: 2007
  end-page: 2673
  ident: 2025.01.17.633582v1.16
  article-title: Diversity of TMPRSS2-ERG fusion transcripts in the human prostate
  publication-title: Oncogene
– volume: 110
  start-page: 13374
  year: 2013
  end-page: 9
  ident: 2025.01.17.633582v1.50
  article-title: Structural and dynamic studies of the transcription factor ERG reveal DNA binding is allosterically autoinhibited
  publication-title: Proc Natl Acad Sci U S A
– volume: 21
  start-page: 1882
  year: 2007
  end-page: 94
  ident: 2025.01.17.633582v1.14
  article-title: Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the ETS gene family
  publication-title: Genes Dev
– volume: 80
  start-page: 437
  year: 2011
  end-page: 71
  ident: 2025.01.17.633582v1.42
  article-title: Genomic and biochemical insights into the specificity of ETS transcription factors
  publication-title: Annual review of biochemistry
– volume: 310
  start-page: 644
  year: 2005
  end-page: 8
  ident: 2025.01.17.633582v1.2
  article-title: Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer
  publication-title: Science
– volume: 546
  start-page: 671
  year: 2017
  end-page: 675
  ident: 2025.01.17.633582v1.19
  article-title: ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis
  publication-title: Nature
– volume: 79
  start-page: 1008
  year: 2020
  end-page: 1023
  ident: 2025.01.17.633582v1.44
  article-title: DNA Damage Promotes TMPRSS2-ERG Oncoprotein Destruction and Prostate Cancer Suppression via Signaling Converged by GSK3β and WEE1
  publication-title: Mol Cell
– volume: 20
  start-page: 480
  year: 2023
  end-page: 493
  ident: 2025.01.17.633582v1.47
  article-title: Preclinical models of prostate cancer -modelling androgen dependency and castration resistance in vitro, ex vivo and in vivo
  publication-title: Nat Rev Urol
– volume: 67
  start-page: 866
  year: 2015
  end-page: 73
  ident: 2025.01.17.633582v1.28
  article-title: Impact of baseline corticosteroids on survival and steroid androgens in metastatic castration-resistant prostate cancer: exploratory analysis from COU-AA-301
  publication-title: Eur Urol
– volume: 49
  start-page: 2333
  year: 2021
  end-page: 2343
  ident: 2025.01.17.633582v1.43
  article-title: Structural insights into glucocorticoid receptor function
  publication-title: Biochem Soc Trans
– volume: 28
  start-page: 860
  year: 2022
  end-page: 869
  ident: 2025.01.17.633582v1.29
  article-title: The Effect of Corticosteroids on Prostate Cancer Outcome Following Treatment with Enzalutamide: A Multivariate Analysis of the Phase III AFFIRM Trial
  publication-title: Clin Cancer Res
– volume: 23
  year: 2022
  ident: 2025.01.17.633582v1.52
  article-title: The Expression of Proto-Oncogene ETS-Related Gene (ERG) Plays a Central Role in the Oncogenic Mechanism Involved in the Development and Progression of Prostate Cancer
  publication-title: Int J Mol Sci
– volume: 77
  start-page: 654
  year: 2017
  end-page: 671
  ident: 2025.01.17.633582v1.71
  article-title: LuCaP Prostate Cancer Patient-Derived Xenografts Reflect the Molecular Heterogeneity of Advanced Disease an--d Serve as Models for Evaluating Cancer Therapeutics
  publication-title: Prostate
– volume: 21
  issue: 919
  year: 2021
  ident: 2025.01.17.633582v1.59
  article-title: Corticosteroid switch from prednisone to dexamethasone in metastatic castration-resistant prostate cancer patients with biochemical progression on abiraterone acetate plus prednisone
  publication-title: BMC Cancer
– volume: 296
  issue: 100687
  year: 2021
  ident: 2025.01.17.633582v1.48
  article-title: Repression of transcription by the glucocorticoid receptor: A parsimonious model for the genomics era
  publication-title: J Biol Chem
– volume: 3
  start-page: 63
  year: 1993
  end-page: 88
  ident: 2025.01.17.633582v1.37
  article-title: Homologous down regulation of the glucocorticoid receptor: the molecular machinery
  publication-title: Crit Rev Eukaryot Gene Expr
– volume: 24
  start-page: 927
  year: 2018
  end-page: 938
  ident: 2025.01.17.633582v1.21
  article-title: The Glucocorticoid Receptor Is a Key Player for Prostate Cancer Cell Survival and a Target for Improved Antiandrogen Therapy
  publication-title: Clinical Cancer Research
– volume: 71
  start-page: 554
  year: 2018
  end-page: 566
  ident: 2025.01.17.633582v1.15
  article-title: Binding of TMPRSS2-ERG to BAF Chromatin Remodeling Complexes Mediates Prostate Oncogenesis
  publication-title: Mol Cell
– volume: 29
  start-page: 2147
  year: 2010
  end-page: 2160
  ident: 2025.01.17.633582v1.9
  article-title: Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo
  publication-title: The EMBO Journal
– volume: 44
  start-page: 1500
  year: 2023
  end-page: 1518
  ident: 2025.01.17.633582v1.41
  article-title: Computationally guided discovery of novel non-steroidal AR-GR dual antagonists demonstrating potency against antiandrogen resistance
  publication-title: Acta Pharmacol Sin
– volume: 18
  start-page: 245
  year: 2015
  end-page: 52
  ident: 2025.01.17.633582v1.55
  article-title: Medical therapy for Cushing’s disease: adrenal steroidogenesis inhibitors and glucocorticoid receptor blockers
  publication-title: Pituitary
– volume: 6
  start-page: 569
  year: 2007
  end-page: 82
  ident: 2025.01.17.633582v1.36
  article-title: Universal strategies in research and drug discovery based on protein-fragment complementation assays
  publication-title: Nature reviews Drug discovery
– volume: 14
  issue: 128
  year: 2013
  ident: 2025.01.17.633582v1.69
  article-title: Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool
  publication-title: BMC Bioinformatics
– volume: 15
  issue: 550
  year: 2014
  ident: 2025.01.17.633582v1.67
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol
– volume: 22
  start-page: 805
  year: 2015
  end-page: 18
  ident: 2025.01.17.633582v1.46
  article-title: Co-targeting AR and HSP90 suppresses prostate cancer cell growth and prevents resistance mechanisms
  publication-title: Endocr Relat Cancer
– volume: 49
  start-page: 1336
  year: 2017
  end-page: 1345
  ident: 2025.01.17.633582v1.11
  article-title: TMPRSS2-ERG fusion co-opts master transcription factors and activates NOTCH signaling in primary prostate cancer
  publication-title: Nat Genet
– volume: 163
  start-page: 1011
  year: 2015
  end-page: 25
  ident: 2025.01.17.633582v1.1
  article-title: The Molecular Taxonomy of Primary Prostate Cancer
  publication-title: Cell
– volume: 5
  start-page: 72
  year: 2014
  end-page: 89
  ident: 2025.01.17.633582v1.22
  article-title: Glucocorticoid receptor activity contributes to resistance to androgen-targeted therapy in prostate cancer
  publication-title: Horm Cancer
– volume: 119
  start-page: 1052
  year: 2018
  end-page: 1059
  ident: 2025.01.17.633582v1.61
  article-title: Phase II pilot study of the prednisone to dexamethasone switch in metastatic castration-resistant prostate cancer (mCRPC) patients with limited progression on abiraterone plus prednisone (SWITCH study)
  publication-title: Br J Cancer
– volume: 59
  start-page: 904
  year: 2015
  end-page: 16
  ident: 2025.01.17.633582v1.18
  article-title: Truncated ERG Oncoproteins from TMPRSS2-ERG Fusions Are Resistant to SPOP-Mediated Proteasome Degradation
  publication-title: Mol Cell
– volume: 19
  start-page: 72
  year: 2016
  end-page: 8
  ident: 2025.01.17.633582v1.63
  article-title: The influence of prednisone on the efficacy of docetaxel in men with metastatic castration-resistant prostate cancer
  publication-title: Prostate Cancer Prostatic Dis
– volume: 1
  start-page: 417
  year: 2015
  end-page: 425
  ident: 2025.01.17.633582v1.53
  article-title: The Molecular Signatures Database (MSigDB) hallmark gene set collection
  publication-title: Cell Syst
– volume: 13
  start-page: 47
  year: 2016
  end-page: 60
  ident: 2025.01.17.633582v1.57
  article-title: Androgen-glucocorticoid interactions in the era of novel prostate cancer therapy
  publication-title: Nat Rev Urol
– volume: 13
  year: 2021
  ident: 2025.01.17.633582v1.64
  article-title: Prognostic Significance of Glucocorticoid Receptor Expression in Cancer: A Systematic Review and Meta-Analysis
  publication-title: Cancers (Basel
– volume: 83
  start-page: 2763
  year: 2023
  end-page: 2774
  ident: 2025.01.17.633582v1.33
  article-title: The Genomic and Epigenomic Landscape of Double-Negative Metastatic Prostate Cancer
  publication-title: Cancer Res
– volume: 80
  start-page: 746
  year: 2021
  end-page: 757
  ident: 2025.01.17.633582v1.26
  article-title: Nascent Prostate Cancer Heterogeneity Drives Evolution and Resistance to Intense Hormonal Therapy
  publication-title: Eur Urol
– volume: 78
  start-page: 4716
  year: 2018
  end-page: 4730
  ident: 2025.01.17.633582v1.31
  article-title: Neoadjuvant-Intensive Androgen Deprivation Therapy Selects for Prostate Tumor Foci with Diverse Subclonal Oncogenic Alterations
  publication-title: Cancer Res
– volume: 14
  year: 2022
  ident: 2025.01.17.633582v1.51
  article-title: Past, Current, and Future Strategies to Target ERG Fusion-Positive Prostate Cancer
  publication-title: Cancers (Basel
– volume: 16
  issue: 6
  year: 2015
  ident: 2025.01.17.633582v1.62
  article-title: Corticosteroids in the management of prostate cancer: a critical review
  publication-title: Curr Treat Options Oncol
– volume: 1
  start-page: e20
  year: 2012
  ident: 2025.01.17.633582v1.40
  article-title: Overexpression of ETV4 is oncogenic in prostate cells through promotion of both cell proliferation and epithelial to mesenchymal transition
  publication-title: Oncogenesis
– volume: 29
  start-page: 104
  year: 2019
  end-page: 117
  ident: 2025.01.17.633582v1.25
  article-title: ETS Proteins Bind with Glucocorticoid Receptors: Relevance for Treatment of Ewing Sarcoma
  publication-title: Cell Rep
SSID ssj0002961374
Score 1.90165
SecondaryResourceType preprint
Snippet Approximately 50% of prostate cancer (PCa) patients harbor fusions involving the and genes. Despite this, tailored therapies targeting the fused gene, , remain...
Approximately 50% of prostate cancer (PCa) patients harbor fusions involving the TMPRSS2 and ERG genes. Despite this, tailored therapies targeting the fused...
Approximately 50% of prostate cancer (PCa) patients harbor fusions involving the TMPRSS2 and ERG genes. Despite this, tailored therapies targeting the fused...
SourceID pubmedcentral
biorxiv
proquest
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Allosteric properties
Androgen receptors
Antiandrogens
Biopsy
Cancer Biology
Chemotherapy
Clinical trials
Epigenetics
Funding
Glucocorticoid receptors
Hydrocortisone
Pharmaceuticals
Prostate cancer
R&D
Research & development
Stockholders
Title TMPRSS2-ERG confers resistance to antiandrogens: mechanism and therapeutic implications
URI https://www.ncbi.nlm.nih.gov/pubmed/40568162
https://www.proquest.com/docview/3157267902
https://www.proquest.com/docview/3224263831
https://www.biorxiv.org/content/10.1101/2025.01.17.633582
https://pubmed.ncbi.nlm.nih.gov/PMC12190819
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEG8UYuKb36JIRuLrSNuNrvVRAxITCOEj8rZ0Wxf3wEb4MPrfe7dNAoYHX3ddbrtee7_2vgh5jAElSxUy26Na2K7SytbCtG3JQ8FDKsLQ4IV-fyB6U_dt1p7ttPrCsMogyZZfyWfux8eAbdh9i8VNGZ7V8zqbzGsJB7M8j0kVVKyNXRu6s9b2eoUrsFOeW_oxD74JiLfkdAhd_g2S3LE63TNSHeqFWZ6TI5NekJOibeT3JXmf9Iej8ZjbndGrFeYpeysLjs0IBWEOrXVmgbxg3qNlBvqxerLmBhN8k9UcCJG1k3NlJTsR5Vdk2u1MXnp22SDBDjgT3I5kLIMQTD5lEVhmrR1NYyOMowJXGOwiLgLJvCA2VCtAalpiuTyXRTGW1Gkb55pU0iw1t8TyWKBDl7kxeuKZjBQcOwSPhZZURdqwGmmWwvIXRRkMHwXqU-Yzzy8EWiP1XzH65UpY-cDH48JTFMjNLRl0GB0TOjXZBsbwvG68dIDNTSH1LRcAlELCz9aI3JuP7QCsj71PSZOPvE42g90YEc_dP779npziM7xc4bROKuvlxjwA3FgHDVJ97gyGo0auYD851tCu
linkProvider Cold Spring Harbor Laboratory Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEG8UYvTNb1HUmfg60naja301ICoYAxh5W7qti3tgIwyM_vfebZOg8cHn63Ld9dr79b5KyHUMKFmqkNke1cJ2lVa2FqZtSx4KHlIRhgYd-oMn0XtxHybtSeVwy6u0yiDJ5h_JexHHx4RtOH3LzU0Z3tWLPpvMawkHqzxb6KbeJHXQMxdTurqT1srHwhUYK8-tgpl_fg6wt2L3F8T8nSm5Znq6u6T-rGdmvkc2TLpPtsq3Iz8PyOt48DwcjbjdGd5ZYVG3l1twd0Y8CAtpLTILhAaLH80zUJL8xpoarPJN8ikQImut8MpK1tLKD8lLtzO-7dnVKwl2wJngdiRjGYRg9ymLwDxr7WgaG2EcFbjC4FPiIpDMC2JDtQK4piX2zHNZFGNfnbZxjkgtzVJzQiyPBTp0mRtjOJ7JSMHdQ_BYaElVpA1rkKtKWP6s7IXho0B9ynzm-aVAG6T5LUa_2g65D3w8LjxFgXy1IoMiY3RCpyZbwhheNI-XDrA5LqW-4gKoUkj42QaRP9ZjNQCbZP-kpMlb0SybwZGMsOf0H3O_JNu98aDv9--fHs_IDtLR28Jpk9QW86U5B_yxCC4KJfsC4mnT6w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYBOLGTllTiWsq20kdmytQytKq6iJ6i5zEETk0qbog-HtmklC1qAfOY2Wc8djzPJsJuY0BJUsVMtujWtiu0srWwtRtyUPBQyrC0KBDv9UWzYH7MqwPl2phMK0ySLLJV_KZx_ExYRtO32JzU4Z39bzPJvNqwsEqzxq6qWvjKN4k26BrLmp2Y1hb-Fm4AoPluWVAc-0nAPqWLNfBzL_Zkkvmp7FPtjt6bCYHZMOkh2SneD_y-4i891udbq_H7cfukxXmtXtTC-7PiAlhMa1ZZoHgQAGiSQaKMr2zRgYrfZPpCAiRtVR8ZSVLqeXHZNB47N837fKlBDvgTHA7krEMQrD9lEVgorV2NI2NMI4KXGHwOXERSOYFsaFaAWTTEvvmuSyKsbdO3TgnZCvNUnNGLI8FOnSZG2NInslIwf1D8FhoSVWkDauQaiksf1z0w_BRoD5lPvP8QqAVcvkrRr_cElMf-HhceIoCuboggzJjhEKnJpvDGJ43kJcOsDktpL7gAshSSPjZCpEr67EYgI2yVylp8pE3zGZwLCP0Of_H3G_Ibueh4b89t18vyB6S0eHC6SXZmk3m5gogyCy4znXsBwfY1Pw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TMPRSS2-ERG+confers+resistance+to+antiandrogens%3A+mechanism+and+therapeutic+implications&rft.jtitle=bioRxiv&rft.au=Sekar%2C+Arunachalam&rft.au=Chatterjee%2C+Rishita&rft.au=Selvadurai%2C+Boobash+Raj&rft.au=Pal%2C+Lipika+R.&rft.date=2025-01-20&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2025.01.17.633582&rft_id=info%3Apmid%2F40568162&rft.externalDocID=PMC12190819
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon