TMPRSS2-ERG confers resistance to antiandrogens: mechanism and therapeutic implications
Approximately 50% of prostate cancer (PCa) patients harbor fusions involving the and genes. Despite this, tailored therapies targeting the fused gene, , remain undeveloped. Our study analyzed biopsy samples from two clinical trials assessing the efficacies of androgen receptor (AR) signaling inhibit...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article Paper |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
20.01.2025
Cold Spring Harbor Laboratory |
Edition | 1.1 |
Subjects | |
Online Access | Get full text |
ISSN | 2692-8205 2692-8205 |
DOI | 10.1101/2025.01.17.633582 |
Cover
Abstract | Approximately 50% of prostate cancer (PCa) patients harbor fusions involving the
and
genes. Despite this, tailored therapies targeting the fused gene,
, remain undeveloped. Our study analyzed biopsy samples from two clinical trials assessing the efficacies of androgen receptor (AR) signaling inhibitors (ARSIs). The results revealed that
promotes resistance to ARSIs and is associated with elevated levels of the glucocorticoid receptor (GR). Subsequent assays showed that GR directly interacts with tERG, alleviates allosteric autoinhibition and prevents chemotherapy-induced tERG degradation. In PCa models, either inhibiting GR or lowering cortisol levels suppressed tumor growth in tERG-positive models, but not in fusion-negative models. In addition, patient-derived fusion-positive xenografts displayed enhanced sensitivity to combined GR and AR inhibitors. Collectively, these findings highlight
as a new biomarker and propose that simultaneous inhibition of GR and AR may specifically benefit
-positine patients. However, GR stimulatory corticosteroid therapies may not be advisable for this patient subgroup. |
---|---|
AbstractList | Approximately 50% of prostate cancer (PCa) patients harbor fusions involving the TMPRSS2 and ERG genes. Despite this, tailored therapies targeting the fused gene, tERG, remain undeveloped. Our study analyzed biopsy samples from two clinical trials assessing the efficacies of androgen receptor (AR) signaling inhibitors (ARSIs). The results revealed that tERG promotes resistance to ARSIs and is associated with elevated levels of the glucocorticoid receptor (GR). Subsequent assays showed that GR directly interacts with tERG, alleviates allosteric autoinhibition and prevents chemotherapy-induced tERG degradation. In PCa models, either inhibiting GR or lowering cortisol levels suppressed tumor growth in tERG-positive models, but not in fusion-negative models. In addition, patient-derived fusion-positive xenografts displayed enhanced sensitivity to combined GR and AR inhibitors. Collectively, these findings highlight TMPRSS2-ERG as a new biomarker and propose that simultaneous inhibition of GR and AR may specifically benefit tERG-positine patients. However, GR stimulatory corticosteroid therapies may not be advisable for this patient subgroup.Competing Interest StatementE.C. obtained funding from Genentech, Sanofi, AbbVie, Astra Zeneca, Foghorn Pharmaceuticals, Kronos Bio, MacroGenics, Janssen Research, Bayer Pharmaceuticals, Forma Pharmaceuticals, Gilead and Zenith Epigenetics and is consultant of DotQuant. A.G.S. reports that the National Cancer Institute (NCI) has a Cooperative Research and Development Agreement (CRADA) with Astellas. Resources are provided by this CRADA to the NCI. A.G.S. received no personal funding from this CRADA but is the primary investigator of the CRADA. W.V.W. obtained research funding from AstraZeneca, Bayer AG and Sanofi. H.H. and is an employee and shareholder of Corcept Therapeutics. A.E.G. is a shareholder of Corcept Therapeutics Inc. and Exelixis Inc. All other authors declare that they have no conflicts of interest relevant to the herein reported study. Approximately 50% of prostate cancer (PCa) patients harbor fusions involving the TMPRSS2 and ERG genes. Despite this, tailored therapies targeting the fused gene, tERG, remain undeveloped. Our study analyzed biopsy samples from two clinical trials assessing the efficacies of androgen receptor (AR) signaling inhibitors (ARSIs). The results revealed that tERG promotes resistance to ARSIs and is associated with elevated levels of the glucocorticoid receptor (GR). Subsequent assays showed that GR directly interacts with tERG, alleviates allosteric autoinhibition and prevents chemotherapy-induced tERG degradation. In PCa models, either inhibiting GR or lowering cortisol levels suppressed tumor growth in tERG-positive models, but not in fusion-negative models. In addition, patient-derived fusion-positive xenografts displayed enhanced sensitivity to combined GR and AR inhibitors. Collectively, these findings highlight TMPRSS2-ERG as a new biomarker and propose that simultaneous inhibition of GR and AR may specifically benefit tERG-positine patients. However, GR stimulatory corticosteroid therapies may not be advisable for this patient subgroup. Approximately 50% of prostate cancer (PCa) patients harbor fusions involving the TMPRSS2 and ERG genes. Despite this, tailored therapies targeting the fused gene, tERG , remain undeveloped. Our study analyzed biopsy samples from two clinical trials assessing the efficacies of androgen receptor (AR) signaling inhibitors (ARSIs). The results revealed that tERG promotes resistance to ARSIs and is associated with elevated levels of the glucocorticoid receptor (GR). Subsequent assays showed that GR directly interacts with tERG, alleviates allosteric autoinhibition and prevents chemotherapy-induced tERG degradation. In PCa models, either inhibiting GR or lowering cortisol levels suppressed tumor growth in tERG-positive models, but not in fusion-negative models. In addition, patient-derived fusion-positive xenografts displayed enhanced sensitivity to combined GR and AR inhibitors. Collectively, these findings highlight TMPRSS2-ERG as a new biomarker and propose that simultaneous inhibition of GR and AR may specifically benefit tERG -positine patients. However, GR stimulatory corticosteroid therapies may not be advisable for this patient subgroup.Approximately 50% of prostate cancer (PCa) patients harbor fusions involving the TMPRSS2 and ERG genes. Despite this, tailored therapies targeting the fused gene, tERG , remain undeveloped. Our study analyzed biopsy samples from two clinical trials assessing the efficacies of androgen receptor (AR) signaling inhibitors (ARSIs). The results revealed that tERG promotes resistance to ARSIs and is associated with elevated levels of the glucocorticoid receptor (GR). Subsequent assays showed that GR directly interacts with tERG, alleviates allosteric autoinhibition and prevents chemotherapy-induced tERG degradation. In PCa models, either inhibiting GR or lowering cortisol levels suppressed tumor growth in tERG-positive models, but not in fusion-negative models. In addition, patient-derived fusion-positive xenografts displayed enhanced sensitivity to combined GR and AR inhibitors. Collectively, these findings highlight TMPRSS2-ERG as a new biomarker and propose that simultaneous inhibition of GR and AR may specifically benefit tERG -positine patients. However, GR stimulatory corticosteroid therapies may not be advisable for this patient subgroup. Approximately 50% of prostate cancer (PCa) patients harbor fusions involving the and genes. Despite this, tailored therapies targeting the fused gene, , remain undeveloped. Our study analyzed biopsy samples from two clinical trials assessing the efficacies of androgen receptor (AR) signaling inhibitors (ARSIs). The results revealed that promotes resistance to ARSIs and is associated with elevated levels of the glucocorticoid receptor (GR). Subsequent assays showed that GR directly interacts with tERG, alleviates allosteric autoinhibition and prevents chemotherapy-induced tERG degradation. In PCa models, either inhibiting GR or lowering cortisol levels suppressed tumor growth in tERG-positive models, but not in fusion-negative models. In addition, patient-derived fusion-positive xenografts displayed enhanced sensitivity to combined GR and AR inhibitors. Collectively, these findings highlight as a new biomarker and propose that simultaneous inhibition of GR and AR may specifically benefit -positine patients. However, GR stimulatory corticosteroid therapies may not be advisable for this patient subgroup. Approximately 50% of prostate cancer (PCa) patients harbor fusions involving the TMPRSS2 and ERG genes. Despite this, tailored therapies targeting the fused gene, tERG , remain undeveloped. Our study analyzed biopsy samples from two clinical trials assessing the efficacies of androgen receptor (AR) signaling inhibitors (ARSIs). The results revealed that tERG promotes resistance to ARSIs and is associated with elevated levels of the glucocorticoid receptor (GR). Subsequent assays showed that GR directly interacts with tERG, alleviates allosteric autoinhibition and prevents chemotherapy-induced tERG degradation. In PCa models, either inhibiting GR or lowering cortisol levels suppressed tumor growth in tERG-positive models, but not in fusion-negative models. In addition, patient-derived fusion-positive xenografts displayed enhanced sensitivity to combined GR and AR inhibitors. Collectively, these findings highlight TMPRSS2-ERG as a new biomarker and propose that simultaneous inhibition of GR and AR may specifically benefit tERG -positine patients. However, GR stimulatory corticosteroid therapies may not be advisable for this patient subgroup. |
Author | Genna, Alessandro Weizman, Eviatar Vinik, Yaron Garcia, Diana Drago Hunt, Hazel Pal, Lipika R Karatekin, Feride Afek, Ariel Dahut, William L Ku, Anson Ruppin, Eytan Verma, Aakanksha Gupta, Nitin Corey, Eva Amit, Ido Lis, Rosina T Nataraj, Nishanth Belugali Oren, Roni Sekar, Arunachalam David, Eyal Chatterjee, Rishita Selvadurai, Boobash Raj Kartal, Sumeyra Blecher-Gonen, Ronnie Yarden, Yosef Greenstein, Andrew E Giri, Suvendu Avioz, Tamir Zerbib, Mirie Pan, Yunqian Schaffer, Alejändro A van Weerden, Wytske M Bright, Jack R Huang, Haojie Lev, Sima Sowalsky, Adam G |
Author_xml | – sequence: 1 givenname: Arunachalam surname: Sekar fullname: Sekar, Arunachalam – sequence: 2 givenname: Rishita surname: Chatterjee fullname: Chatterjee, Rishita – sequence: 3 givenname: Boobash Raj surname: Selvadurai fullname: Selvadurai, Boobash Raj – sequence: 4 givenname: Lipika R surname: Pal fullname: Pal, Lipika R – sequence: 5 givenname: Aakanksha surname: Verma fullname: Verma, Aakanksha – sequence: 6 givenname: Nishanth Belugali surname: Nataraj fullname: Nataraj, Nishanth Belugali – sequence: 7 givenname: Diana Drago surname: Garcia fullname: Garcia, Diana Drago – sequence: 8 givenname: Suvendu surname: Giri fullname: Giri, Suvendu – sequence: 9 givenname: Alessandro surname: Genna fullname: Genna, Alessandro – sequence: 10 givenname: Feride surname: Karatekin fullname: Karatekin, Feride – sequence: 11 givenname: Nitin surname: Gupta fullname: Gupta, Nitin – sequence: 12 givenname: Mirie surname: Zerbib fullname: Zerbib, Mirie – sequence: 13 givenname: Yaron surname: Vinik fullname: Vinik, Yaron – sequence: 14 givenname: Tamir surname: Avioz fullname: Avioz, Tamir – sequence: 15 givenname: Eviatar surname: Weizman fullname: Weizman, Eviatar – sequence: 16 givenname: Eyal surname: David fullname: David, Eyal – sequence: 17 givenname: Alejändro A surname: Schaffer fullname: Schaffer, Alejändro A – sequence: 18 givenname: Yunqian surname: Pan fullname: Pan, Yunqian – sequence: 19 givenname: Haojie surname: Huang fullname: Huang, Haojie – sequence: 20 givenname: Wytske M surname: van Weerden fullname: van Weerden, Wytske M – sequence: 21 givenname: Eva surname: Corey fullname: Corey, Eva – sequence: 22 givenname: Hazel surname: Hunt fullname: Hunt, Hazel – sequence: 23 givenname: Andrew E surname: Greenstein fullname: Greenstein, Andrew E – sequence: 24 givenname: Ronnie surname: Blecher-Gonen fullname: Blecher-Gonen, Ronnie – sequence: 25 givenname: Roni surname: Oren fullname: Oren, Roni – sequence: 26 givenname: Ariel surname: Afek fullname: Afek, Ariel – sequence: 27 givenname: Ido surname: Amit fullname: Amit, Ido – sequence: 28 givenname: Sima surname: Lev fullname: Lev, Sima – sequence: 29 givenname: Anson surname: Ku fullname: Ku, Anson – sequence: 30 givenname: Sumeyra surname: Kartal fullname: Kartal, Sumeyra – sequence: 31 givenname: Jack R surname: Bright fullname: Bright, Jack R – sequence: 32 givenname: Rosina T surname: Lis fullname: Lis, Rosina T – sequence: 33 givenname: William L surname: Dahut fullname: Dahut, William L – sequence: 34 givenname: Adam G surname: Sowalsky fullname: Sowalsky, Adam G – sequence: 35 givenname: Eytan surname: Ruppin fullname: Ruppin, Eytan – sequence: 36 givenname: Yosef surname: Yarden fullname: Yarden, Yosef |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40568162$$D View this record in MEDLINE/PubMed |
BookMark | eNpdUU1v1TAQtFARLa_9AVxQpF645LFrJ47dS4WqUpCKQP1Qj5aTbPpcJXawkwr-PakeLS2nXWlmZ0azb9mOD54Ye4ewRgT8yIGXa8A1VmspRKn4K7bHpea54lDuPNt32UFKdwDAtURRFW_YbgGlVCj5Hru5-vbj4vKS56cXZ1kTfEcxZZGSS5P1DWVTyKyfnPVtDLfk01E2ULOx3qVhAdps2lC0I82TazI3jL1r7OSCT_vsdWf7RAd_54pdfz69OvmSn38_-3ry6Tyv-eKft6pTdVOCBmx5AdYKCx1JErouJFW61LJWWNUdgdWohVULtyiw7aAQWJJYseOt7jjXA7UN-Sna3ozRDTb-NsE68xLxbmNuw71BjhrUIrliH7YKtQvxl7t_un0o2AAarMy24H_UMYafM6XJDC411PfWU5iTEZwXXAolcKEe_ke9C3P0SxVmyV1xWWl4EHz_PP2T9eN_xB-UH5Kt |
ContentType | Journal Article Paper |
Copyright | 2025. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2025.01.17.633582v1 2025, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2025. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2025.01.17.633582v1 – notice: 2025, Posted by Cold Spring Harbor Laboratory |
DBID | NPM 7X8 FX. 5PM |
DOI | 10.1101/2025.01.17.633582 |
DatabaseName | PubMed MEDLINE - Academic bioRxiv PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.1 |
ExternalDocumentID | PMC12190819 2025.01.17.633582v1 40568162 |
Genre | Journal Article Preprint Working Paper/Pre-Print |
GroupedDBID | 8FE 8FH AFKRA ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI CCPQU HCIFZ LK8 M7P NPM NQS PHGZM PHGZT PIMPY PQGLB PROAC RHI 7X8 PUEGO FX. 5PM |
ID | FETCH-LOGICAL-b2162-d8f8bc50901d240aa3a0fe6e39b46e79596b817bfe0a9193a8509441df04315e3 |
IEDL.DBID | FX. |
ISSN | 2692-8205 |
IngestDate | Thu Aug 21 18:34:15 EDT 2025 Sat Jan 25 14:40:50 EST 2025 Fri Sep 05 15:49:42 EDT 2025 Fri Jul 25 09:17:59 EDT 2025 Mon Jul 21 05:37:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | ETS family TMPRSS2 fusions prostate cancer corticosteroids GR antagonists |
Language | English |
License | The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b2162-d8f8bc50901d240aa3a0fe6e39b46e79596b817bfe0a9193a8509441df04315e3 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 ObjectType-Working Paper/Pre-Print-3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interest Statement: E.C. obtained funding from Genentech, Sanofi, AbbVie, Astra Zeneca, Foghorn Pharmaceuticals, Kronos Bio, MacroGenics, Janssen Research, Bayer Pharmaceuticals, Forma Pharmaceuticals, Gilead and Zenith Epigenetics and is consultant of DotQuant. A.G.S. reports that the National Cancer Institute (NCI) has a Cooperative Research and Development Agreement (CRADA) with Astellas. Resources are provided by this CRADA to the NCI. A.G.S. received no personal funding from this CRADA but is the primary investigator of the CRADA. W.V.W. obtained research funding from AstraZeneca, Bayer AG and Sanofi. H.H. and is an employee and shareholder of Corcept Therapeutics. A.E.G. is a shareholder of Corcept Therapeutics Inc. and Exelixis Inc. All other authors declare that they have no conflicts of interest relevant to the herein reported study. |
OpenAccessLink | https://www.biorxiv.org/content/10.1101/2025.01.17.633582 |
PMID | 40568162 |
PQID | 3157267902 |
PQPubID | 2050091 |
PageCount | 41 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12190819 biorxiv_primary_2025_01_17_633582 proquest_miscellaneous_3224263831 proquest_journals_3157267902 pubmed_primary_40568162 |
PublicationCentury | 2000 |
PublicationDate | 2025-Jan-20 20250120 |
PublicationDateYYYYMMDD | 2025-01-20 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-Jan-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cold Spring Harbor |
PublicationTitle | bioRxiv |
PublicationTitleAlternate | bioRxiv |
PublicationYear | 2025 |
Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
References | Puhr (2025.01.17.633582v1.21) 2018; 24 Isikbay (2025.01.17.633582v1.22) 2014; 5 Centenera (2025.01.17.633582v1.46) 2015; 22 Sandoval (2025.01.17.633582v1.15) 2018; 71 (2025.01.17.633582v1.1) 2015; 163 Romero-Laorden (2025.01.17.633582v1.61) 2018; 119 Hollenhorst, McIntosh, Graves (2025.01.17.633582v1.42) 2011; 80 Teply, Luber, Denmeade, Antonarakis (2025.01.17.633582v1.63) 2016; 19 Blecher-Gonen (2025.01.17.633582v1.70) 2013; 8 Nguyen (2025.01.17.633582v1.71) 2017; 77 Robinson (2025.01.17.633582v1.4) 2015; 161 Grasso (2025.01.17.633582v1.3) 2012; 487 Khosh Kish (2025.01.17.633582v1.52) 2022; 23 Xiao (2025.01.17.633582v1.54) 2022; 601 Gerber, Newton, Sasse (2025.01.17.633582v1.48) 2021; 296 Bose (2025.01.17.633582v1.19) 2017; 546 Ndibe, Wang, Sonpavde (2025.01.17.633582v1.62) 2015; 16 Gan (2025.01.17.633582v1.17) 2015; 59 Germain (2025.01.17.633582v1.47) 2023; 20 Benjamini, Hochberg (2025.01.17.633582v1.68) 1995; 57 Li (2025.01.17.633582v1.24) 2017; 6 Chen (2025.01.17.633582v1.69) 2013; 14 Pellecchia (2025.01.17.633582v1.40) 2012; 1 Teo, Scher (2025.01.17.633582v1.60) 2018; 119 Perner (2025.01.17.633582v1.6) 2007; 31 Kron (2025.01.17.633582v1.11) 2017; 49 Shah (2025.01.17.633582v1.23) 2017; 6 Yu (2025.01.17.633582v1.12) 2010; 17 Srivastava (2025.01.17.633582v1.25) 2019; 29 Regan (2025.01.17.633582v1.50) 2013; 110 Zhao (2025.01.17.633582v1.29) 2022; 28 Hollenhorst, Shah, Hopkins, Graves (2025.01.17.633582v1.14) 2007; 21 Montgomery (2025.01.17.633582v1.28) 2015; 67 Navone (2025.01.17.633582v1.56) 2018; 78 Frank, Ortlund, Liu (2025.01.17.633582v1.43) 2021; 49 Fleseriu, Petersenn (2025.01.17.633582v1.55) 2015; 18 Lundberg (2025.01.17.633582v1.33) 2023; 83 Tomlins (2025.01.17.633582v1.38) 2008; 10 Paulo (2025.01.17.633582v1.5) 2012; 51 Hollenhorst, Paul, Ferris, Graves (2025.01.17.633582v1.39) 2011; 1 Wu (2025.01.17.633582v1.10) 2013; 73 Quigley (2025.01.17.633582v1.32) 2018; 175 Chai (2025.01.17.633582v1.41) 2023; 44 Srivastava (2025.01.17.633582v1.58) 2019; 29 Bakour, Moriarty, Moore, Robson, Annett (2025.01.17.633582v1.64) 2021; 13 An (2025.01.17.633582v1.18) 2015; 59 Clark (2025.01.17.633582v1.16) 2007; 26 Oakley, Cidlowski (2025.01.17.633582v1.37) 1993; 3 Lorenzin, Demichelis (2025.01.17.633582v1.51) 2022; 14 Karzai (2025.01.17.633582v1.27) 2021; 27 Abida (2025.01.17.633582v1.65) 2024; 30 Donaldson, Petersen, Graves, McIntosh (2025.01.17.633582v1.8) 1996; 15 Sun (2025.01.17.633582v1.13) 2008; 27 Xie (2025.01.17.633582v1.34) 2015; 136 Yang (2025.01.17.633582v1.59) 2021; 21 Tomlins (2025.01.17.633582v1.2) 2005; 310 Liberzon (2025.01.17.633582v1.53) 2015; 1 Wilkinson (2025.01.17.633582v1.26) 2021; 80 Michnick, Ear, Manderson, Remy, Stefan (2025.01.17.633582v1.36) 2007; 6 Narayanan, Srinivas, Feldman (2025.01.17.633582v1.57) 2016; 13 Dobin (2025.01.17.633582v1.66) 2013; 29 Kirschke, Goswami, Southworth, Griffin, Agard (2025.01.17.633582v1.45) 2014; 157 Roudier (2025.01.17.633582v1.7) 2016; 76 Love, Huber, Anders (2025.01.17.633582v1.67) 2014; 15 Arora (2025.01.17.633582v1.20) 2013; 155 Hussain (2025.01.17.633582v1.30) 2018; 36 Sowalsky (2025.01.17.633582v1.31) 2018; 78 Hong (2025.01.17.633582v1.44) 2020; 79 Nhili (2025.01.17.633582v1.49) 2013; 41 Wei (2025.01.17.633582v1.9) 2010; 29 Puhr (2025.01.17.633582v1.35) 2018; 24 |
References_xml | – volume: 157 start-page: 1685 year: 2014 end-page: 97 ident: 2025.01.17.633582v1.45 article-title: Glucocorticoid receptor function regulated by coordinated action of the Hsp90 and Hsp70 chaperone cycles publication-title: Cell – volume: 29 start-page: 104 year: 2019 end-page: 117 ident: 2025.01.17.633582v1.58 article-title: ETS Proteins Bind with Glucocorticoid Receptors: Relevance for Treatment of Ewing Sarcoma publication-title: Cell Rep – volume: 487 start-page: 239 year: 2012 end-page: 43 ident: 2025.01.17.633582v1.3 article-title: The mutational landscape of lethal castration-resistant prostate cancer publication-title: Nature – volume: 36 start-page: 991 year: 2018 end-page: 999 ident: 2025.01.17.633582v1.30 article-title: Targeting Androgen Receptor and DNA Repair in Metastatic Castration-Resistant Prostate Cancer: Results From NCI 9012 publication-title: J Clin Oncol – volume: 8 start-page: 539 year: 2013 end-page: 554 ident: 2025.01.17.633582v1.70 article-title: High-throughput chromatin immunoprecipitation for genome-wide mapping of in vivo protein-DNA interactions and epigenomic states publication-title: Nat Protoc – volume: 155 start-page: 1309 year: 2013 end-page: 22 ident: 2025.01.17.633582v1.20 article-title: Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade publication-title: Cell – volume: 6 year: 2017 ident: 2025.01.17.633582v1.24 article-title: Aberrant corticosteroid metabolism in tumor cells enables GR takeover in enzalutamide resistant prostate cancer publication-title: Elife – volume: 136 start-page: E27 year: 2015 end-page: 38 ident: 2025.01.17.633582v1.34 article-title: The expression of glucocorticoid receptor is negatively regulated by active androgen receptor signaling in prostate tumors publication-title: Int J Cancer – volume: 30 start-page: 1111 year: 2024 end-page: 1120 ident: 2025.01.17.633582v1.65 article-title: Phase I Study of ORIC-101, a Glucocorticoid Receptor Antagonist, in Combination with Enzalutamide in Patients with Metastatic Castration-resistant Prostate Cancer Progressing on Enzalutamide publication-title: Clin Cancer Res – volume: 24 start-page: 927 year: 2018 end-page: 938 ident: 2025.01.17.633582v1.35 article-title: The Glucocorticoid Receptor Is a Key Player for Prostate Cancer Cell Survival and a Target for Improved Antiandrogen Therapy publication-title: Clin Cancer Res – volume: 10 start-page: 177 year: 2008 end-page: 88 ident: 2025.01.17.633582v1.38 article-title: Role of the TMPRSS2-ERG gene fusion in prostate cancer publication-title: Neoplasia – volume: 119 start-page: 1041 year: 2018 end-page: 1043 ident: 2025.01.17.633582v1.60 article-title: Lessons from the SWITCH trial: changing glucocorticoids in the management of metastatic castration-resistant prostate cancer (mCRPC) publication-title: Br J Cancer – volume: 51 start-page: 240 year: 2012 end-page: 9 ident: 2025.01.17.633582v1.5 article-title: FLI1 is a novel ETS transcription factor involved in gene fusions in prostate cancer publication-title: Genes Chromosomes Cancer – volume: 6 start-page: e27861 year: 2017 ident: 2025.01.17.633582v1.23 article-title: Regulation of the glucocorticoid receptor via a BET-dependent enhancer drives antiandrogen resistance in prostate cancer publication-title: eLife – volume: 31 start-page: 882 year: 2007 end-page: 8 ident: 2025.01.17.633582v1.6 article-title: TMPRSS2-ERG fusion prostate cancer: an early molecular event associated with invasion publication-title: Am J Surg Pathol – volume: 73 start-page: 6068 year: 2013 end-page: 79 ident: 2025.01.17.633582v1.10 article-title: ERG is a critical regulator of Wnt/LEF1 signaling in prostate cancer publication-title: Cancer Res – volume: 175 issue: 889 year: 2018 ident: 2025.01.17.633582v1.32 article-title: Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer publication-title: Cell – volume: 601 start-page: 434 year: 2022 end-page: 439 ident: 2025.01.17.633582v1.54 article-title: Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer publication-title: Nature – volume: 17 start-page: 443 year: 2010 end-page: 54 ident: 2025.01.17.633582v1.12 article-title: An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression publication-title: Cancer Cell – volume: 161 start-page: 1215 year: 2015 end-page: 1228 ident: 2025.01.17.633582v1.4 article-title: Integrative clinical genomics of advanced prostate cancer publication-title: Cell – volume: 1 start-page: 1044 year: 2011 end-page: 1052 ident: 2025.01.17.633582v1.39 article-title: The ETS gene ETV4 is required for anchorage-independent growth and a cell proliferation gene expression program in PC3 prostate cells publication-title: Genes Cancer – volume: 27 start-page: 5348 year: 2008 end-page: 5353 ident: 2025.01.17.633582v1.13 article-title: TMPRSS2-ERG fusion, a common genomic alteration in prostate cancer activates C-MYC and abrogates prostate epithelial differentiation publication-title: Oncogene – volume: 78 start-page: 1262 year: 2018 end-page: 1282 ident: 2025.01.17.633582v1.56 article-title: Movember GAP1 PDX project: An international collection of serially transplantable prostate cancer patient-derived xenograft (PDX) models publication-title: Prostate – volume: 41 start-page: 125 year: 2013 end-page: 38 ident: 2025.01.17.633582v1.49 article-title: Targeting the DNA-binding activity of the human ERG transcription factor using new heterocyclic dithiophene diamidines publication-title: Nucleic Acids Res – volume: 29 start-page: 15 year: 2013 end-page: 21 ident: 2025.01.17.633582v1.66 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics – volume: 27 start-page: 429 year: 2021 end-page: 437 ident: 2025.01.17.633582v1.27 article-title: Sequential Prostate Magnetic Resonance Imaging in Newly Diagnosed High-risk Prostate Cancer Treated with Neoadjuvant Enzalutamide is Predictive of Therapeutic Response publication-title: Clin Cancer Res – volume: 15 start-page: 125 year: 1996 end-page: 134 ident: 2025.01.17.633582v1.8 article-title: Solution structure of the ETS domain from murine Ets-1: a winged helix-turn-helix DNA binding motif publication-title: The EMBO Journal – volume: 57 start-page: 289 year: 1995 end-page: 300 ident: 2025.01.17.633582v1.68 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: Journal of the Royal Society Series B – volume: 76 start-page: 810 year: 2016 end-page: 822 ident: 2025.01.17.633582v1.7 article-title: Characterizing the molecular features of ERG-positive tumors in primary and castration resistant prostate cancer publication-title: The Prostate – volume: 59 start-page: 917 year: 2015 end-page: 30 ident: 2025.01.17.633582v1.17 article-title: SPOP Promotes Ubiquitination and Degradation of the ERG Oncoprotein to Suppress Prostate Cancer Progression publication-title: Mol Cell – volume: 26 start-page: 2667 year: 2007 end-page: 2673 ident: 2025.01.17.633582v1.16 article-title: Diversity of TMPRSS2-ERG fusion transcripts in the human prostate publication-title: Oncogene – volume: 110 start-page: 13374 year: 2013 end-page: 9 ident: 2025.01.17.633582v1.50 article-title: Structural and dynamic studies of the transcription factor ERG reveal DNA binding is allosterically autoinhibited publication-title: Proc Natl Acad Sci U S A – volume: 21 start-page: 1882 year: 2007 end-page: 94 ident: 2025.01.17.633582v1.14 article-title: Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the ETS gene family publication-title: Genes Dev – volume: 80 start-page: 437 year: 2011 end-page: 71 ident: 2025.01.17.633582v1.42 article-title: Genomic and biochemical insights into the specificity of ETS transcription factors publication-title: Annual review of biochemistry – volume: 310 start-page: 644 year: 2005 end-page: 8 ident: 2025.01.17.633582v1.2 article-title: Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer publication-title: Science – volume: 546 start-page: 671 year: 2017 end-page: 675 ident: 2025.01.17.633582v1.19 article-title: ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis publication-title: Nature – volume: 79 start-page: 1008 year: 2020 end-page: 1023 ident: 2025.01.17.633582v1.44 article-title: DNA Damage Promotes TMPRSS2-ERG Oncoprotein Destruction and Prostate Cancer Suppression via Signaling Converged by GSK3β and WEE1 publication-title: Mol Cell – volume: 20 start-page: 480 year: 2023 end-page: 493 ident: 2025.01.17.633582v1.47 article-title: Preclinical models of prostate cancer -modelling androgen dependency and castration resistance in vitro, ex vivo and in vivo publication-title: Nat Rev Urol – volume: 67 start-page: 866 year: 2015 end-page: 73 ident: 2025.01.17.633582v1.28 article-title: Impact of baseline corticosteroids on survival and steroid androgens in metastatic castration-resistant prostate cancer: exploratory analysis from COU-AA-301 publication-title: Eur Urol – volume: 49 start-page: 2333 year: 2021 end-page: 2343 ident: 2025.01.17.633582v1.43 article-title: Structural insights into glucocorticoid receptor function publication-title: Biochem Soc Trans – volume: 28 start-page: 860 year: 2022 end-page: 869 ident: 2025.01.17.633582v1.29 article-title: The Effect of Corticosteroids on Prostate Cancer Outcome Following Treatment with Enzalutamide: A Multivariate Analysis of the Phase III AFFIRM Trial publication-title: Clin Cancer Res – volume: 23 year: 2022 ident: 2025.01.17.633582v1.52 article-title: The Expression of Proto-Oncogene ETS-Related Gene (ERG) Plays a Central Role in the Oncogenic Mechanism Involved in the Development and Progression of Prostate Cancer publication-title: Int J Mol Sci – volume: 77 start-page: 654 year: 2017 end-page: 671 ident: 2025.01.17.633582v1.71 article-title: LuCaP Prostate Cancer Patient-Derived Xenografts Reflect the Molecular Heterogeneity of Advanced Disease an--d Serve as Models for Evaluating Cancer Therapeutics publication-title: Prostate – volume: 21 issue: 919 year: 2021 ident: 2025.01.17.633582v1.59 article-title: Corticosteroid switch from prednisone to dexamethasone in metastatic castration-resistant prostate cancer patients with biochemical progression on abiraterone acetate plus prednisone publication-title: BMC Cancer – volume: 296 issue: 100687 year: 2021 ident: 2025.01.17.633582v1.48 article-title: Repression of transcription by the glucocorticoid receptor: A parsimonious model for the genomics era publication-title: J Biol Chem – volume: 3 start-page: 63 year: 1993 end-page: 88 ident: 2025.01.17.633582v1.37 article-title: Homologous down regulation of the glucocorticoid receptor: the molecular machinery publication-title: Crit Rev Eukaryot Gene Expr – volume: 24 start-page: 927 year: 2018 end-page: 938 ident: 2025.01.17.633582v1.21 article-title: The Glucocorticoid Receptor Is a Key Player for Prostate Cancer Cell Survival and a Target for Improved Antiandrogen Therapy publication-title: Clinical Cancer Research – volume: 71 start-page: 554 year: 2018 end-page: 566 ident: 2025.01.17.633582v1.15 article-title: Binding of TMPRSS2-ERG to BAF Chromatin Remodeling Complexes Mediates Prostate Oncogenesis publication-title: Mol Cell – volume: 29 start-page: 2147 year: 2010 end-page: 2160 ident: 2025.01.17.633582v1.9 article-title: Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo publication-title: The EMBO Journal – volume: 44 start-page: 1500 year: 2023 end-page: 1518 ident: 2025.01.17.633582v1.41 article-title: Computationally guided discovery of novel non-steroidal AR-GR dual antagonists demonstrating potency against antiandrogen resistance publication-title: Acta Pharmacol Sin – volume: 18 start-page: 245 year: 2015 end-page: 52 ident: 2025.01.17.633582v1.55 article-title: Medical therapy for Cushing’s disease: adrenal steroidogenesis inhibitors and glucocorticoid receptor blockers publication-title: Pituitary – volume: 6 start-page: 569 year: 2007 end-page: 82 ident: 2025.01.17.633582v1.36 article-title: Universal strategies in research and drug discovery based on protein-fragment complementation assays publication-title: Nature reviews Drug discovery – volume: 14 issue: 128 year: 2013 ident: 2025.01.17.633582v1.69 article-title: Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool publication-title: BMC Bioinformatics – volume: 15 issue: 550 year: 2014 ident: 2025.01.17.633582v1.67 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol – volume: 22 start-page: 805 year: 2015 end-page: 18 ident: 2025.01.17.633582v1.46 article-title: Co-targeting AR and HSP90 suppresses prostate cancer cell growth and prevents resistance mechanisms publication-title: Endocr Relat Cancer – volume: 49 start-page: 1336 year: 2017 end-page: 1345 ident: 2025.01.17.633582v1.11 article-title: TMPRSS2-ERG fusion co-opts master transcription factors and activates NOTCH signaling in primary prostate cancer publication-title: Nat Genet – volume: 163 start-page: 1011 year: 2015 end-page: 25 ident: 2025.01.17.633582v1.1 article-title: The Molecular Taxonomy of Primary Prostate Cancer publication-title: Cell – volume: 5 start-page: 72 year: 2014 end-page: 89 ident: 2025.01.17.633582v1.22 article-title: Glucocorticoid receptor activity contributes to resistance to androgen-targeted therapy in prostate cancer publication-title: Horm Cancer – volume: 119 start-page: 1052 year: 2018 end-page: 1059 ident: 2025.01.17.633582v1.61 article-title: Phase II pilot study of the prednisone to dexamethasone switch in metastatic castration-resistant prostate cancer (mCRPC) patients with limited progression on abiraterone plus prednisone (SWITCH study) publication-title: Br J Cancer – volume: 59 start-page: 904 year: 2015 end-page: 16 ident: 2025.01.17.633582v1.18 article-title: Truncated ERG Oncoproteins from TMPRSS2-ERG Fusions Are Resistant to SPOP-Mediated Proteasome Degradation publication-title: Mol Cell – volume: 19 start-page: 72 year: 2016 end-page: 8 ident: 2025.01.17.633582v1.63 article-title: The influence of prednisone on the efficacy of docetaxel in men with metastatic castration-resistant prostate cancer publication-title: Prostate Cancer Prostatic Dis – volume: 1 start-page: 417 year: 2015 end-page: 425 ident: 2025.01.17.633582v1.53 article-title: The Molecular Signatures Database (MSigDB) hallmark gene set collection publication-title: Cell Syst – volume: 13 start-page: 47 year: 2016 end-page: 60 ident: 2025.01.17.633582v1.57 article-title: Androgen-glucocorticoid interactions in the era of novel prostate cancer therapy publication-title: Nat Rev Urol – volume: 13 year: 2021 ident: 2025.01.17.633582v1.64 article-title: Prognostic Significance of Glucocorticoid Receptor Expression in Cancer: A Systematic Review and Meta-Analysis publication-title: Cancers (Basel – volume: 83 start-page: 2763 year: 2023 end-page: 2774 ident: 2025.01.17.633582v1.33 article-title: The Genomic and Epigenomic Landscape of Double-Negative Metastatic Prostate Cancer publication-title: Cancer Res – volume: 80 start-page: 746 year: 2021 end-page: 757 ident: 2025.01.17.633582v1.26 article-title: Nascent Prostate Cancer Heterogeneity Drives Evolution and Resistance to Intense Hormonal Therapy publication-title: Eur Urol – volume: 78 start-page: 4716 year: 2018 end-page: 4730 ident: 2025.01.17.633582v1.31 article-title: Neoadjuvant-Intensive Androgen Deprivation Therapy Selects for Prostate Tumor Foci with Diverse Subclonal Oncogenic Alterations publication-title: Cancer Res – volume: 14 year: 2022 ident: 2025.01.17.633582v1.51 article-title: Past, Current, and Future Strategies to Target ERG Fusion-Positive Prostate Cancer publication-title: Cancers (Basel – volume: 16 issue: 6 year: 2015 ident: 2025.01.17.633582v1.62 article-title: Corticosteroids in the management of prostate cancer: a critical review publication-title: Curr Treat Options Oncol – volume: 1 start-page: e20 year: 2012 ident: 2025.01.17.633582v1.40 article-title: Overexpression of ETV4 is oncogenic in prostate cells through promotion of both cell proliferation and epithelial to mesenchymal transition publication-title: Oncogenesis – volume: 29 start-page: 104 year: 2019 end-page: 117 ident: 2025.01.17.633582v1.25 article-title: ETS Proteins Bind with Glucocorticoid Receptors: Relevance for Treatment of Ewing Sarcoma publication-title: Cell Rep |
SSID | ssj0002961374 |
Score | 1.90165 |
SecondaryResourceType | preprint |
Snippet | Approximately 50% of prostate cancer (PCa) patients harbor fusions involving the
and
genes. Despite this, tailored therapies targeting the fused gene,
, remain... Approximately 50% of prostate cancer (PCa) patients harbor fusions involving the TMPRSS2 and ERG genes. Despite this, tailored therapies targeting the fused... Approximately 50% of prostate cancer (PCa) patients harbor fusions involving the TMPRSS2 and ERG genes. Despite this, tailored therapies targeting the fused... |
SourceID | pubmedcentral biorxiv proquest pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
SubjectTerms | Allosteric properties Androgen receptors Antiandrogens Biopsy Cancer Biology Chemotherapy Clinical trials Epigenetics Funding Glucocorticoid receptors Hydrocortisone Pharmaceuticals Prostate cancer R&D Research & development Stockholders |
Title | TMPRSS2-ERG confers resistance to antiandrogens: mechanism and therapeutic implications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40568162 https://www.proquest.com/docview/3157267902 https://www.proquest.com/docview/3224263831 https://www.biorxiv.org/content/10.1101/2025.01.17.633582 https://pubmed.ncbi.nlm.nih.gov/PMC12190819 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEG8UYuKb36JIRuLrSNuNrvVRAxITCOEj8rZ0Wxf3wEb4MPrfe7dNAoYHX3ddbrtee7_2vgh5jAElSxUy26Na2K7SytbCtG3JQ8FDKsLQ4IV-fyB6U_dt1p7ttPrCsMogyZZfyWfux8eAbdh9i8VNGZ7V8zqbzGsJB7M8j0kVVKyNXRu6s9b2eoUrsFOeW_oxD74JiLfkdAhd_g2S3LE63TNSHeqFWZ6TI5NekJOibeT3JXmf9Iej8ZjbndGrFeYpeysLjs0IBWEOrXVmgbxg3qNlBvqxerLmBhN8k9UcCJG1k3NlJTsR5Vdk2u1MXnp22SDBDjgT3I5kLIMQTD5lEVhmrR1NYyOMowJXGOwiLgLJvCA2VCtAalpiuTyXRTGW1Gkb55pU0iw1t8TyWKBDl7kxeuKZjBQcOwSPhZZURdqwGmmWwvIXRRkMHwXqU-Yzzy8EWiP1XzH65UpY-cDH48JTFMjNLRl0GB0TOjXZBsbwvG68dIDNTSH1LRcAlELCz9aI3JuP7QCsj71PSZOPvE42g90YEc_dP779npziM7xc4bROKuvlxjwA3FgHDVJ97gyGo0auYD851tCu |
linkProvider | Cold Spring Harbor Laboratory Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEG8UYvTNb1HUmfg60naja301ICoYAxh5W7qti3tgIwyM_vfebZOg8cHn63Ld9dr79b5KyHUMKFmqkNke1cJ2lVa2FqZtSx4KHlIRhgYd-oMn0XtxHybtSeVwy6u0yiDJ5h_JexHHx4RtOH3LzU0Z3tWLPpvMawkHqzxb6KbeJHXQMxdTurqT1srHwhUYK8-tgpl_fg6wt2L3F8T8nSm5Znq6u6T-rGdmvkc2TLpPtsq3Iz8PyOt48DwcjbjdGd5ZYVG3l1twd0Y8CAtpLTILhAaLH80zUJL8xpoarPJN8ikQImut8MpK1tLKD8lLtzO-7dnVKwl2wJngdiRjGYRg9ymLwDxr7WgaG2EcFbjC4FPiIpDMC2JDtQK4piX2zHNZFGNfnbZxjkgtzVJzQiyPBTp0mRtjOJ7JSMHdQ_BYaElVpA1rkKtKWP6s7IXho0B9ynzm-aVAG6T5LUa_2g65D3w8LjxFgXy1IoMiY3RCpyZbwhheNI-XDrA5LqW-4gKoUkj42QaRP9ZjNQCbZP-kpMlb0SybwZGMsOf0H3O_JNu98aDv9--fHs_IDtLR28Jpk9QW86U5B_yxCC4KJfsC4mnT6w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYBOLGTllTiWsq20kdmytQytKq6iJ6i5zEETk0qbog-HtmklC1qAfOY2Wc8djzPJsJuY0BJUsVMtujWtiu0srWwtRtyUPBQyrC0KBDv9UWzYH7MqwPl2phMK0ySLLJV_KZx_ExYRtO32JzU4Z39bzPJvNqwsEqzxq6qWvjKN4k26BrLmp2Y1hb-Fm4AoPluWVAc-0nAPqWLNfBzL_Zkkvmp7FPtjt6bCYHZMOkh2SneD_y-4i891udbq_H7cfukxXmtXtTC-7PiAlhMa1ZZoHgQAGiSQaKMr2zRgYrfZPpCAiRtVR8ZSVLqeXHZNB47N837fKlBDvgTHA7krEMQrD9lEVgorV2NI2NMI4KXGHwOXERSOYFsaFaAWTTEvvmuSyKsbdO3TgnZCvNUnNGLI8FOnSZG2NInslIwf1D8FhoSVWkDauQaiksf1z0w_BRoD5lPvP8QqAVcvkrRr_cElMf-HhceIoCuboggzJjhEKnJpvDGJ43kJcOsDktpL7gAshSSPjZCpEr67EYgI2yVylp8pE3zGZwLCP0Of_H3G_Ibueh4b89t18vyB6S0eHC6SXZmk3m5gogyCy4znXsBwfY1Pw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TMPRSS2-ERG+confers+resistance+to+antiandrogens%3A+mechanism+and+therapeutic+implications&rft.jtitle=bioRxiv&rft.au=Sekar%2C+Arunachalam&rft.au=Chatterjee%2C+Rishita&rft.au=Selvadurai%2C+Boobash+Raj&rft.au=Pal%2C+Lipika+R.&rft.date=2025-01-20&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2025.01.17.633582&rft_id=info%3Apmid%2F40568162&rft.externalDocID=PMC12190819 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |