Surface-based Single-subject Morphological Brain Networks: Effects of Morphological Index, Brain Parcellation and Similarity Measure, Sample Size-varying Stability and Test-retest Reliability

Abstract Morphological brain networks, in particular those at the individual level, have become an important approach for studying the human brain connectome; however, relevant methodology is far from being well-established in their formation, description and reproducibility. Here, we extended our p...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Li, Yinzhi, Wang, Ningkai, Wang, Hao, Lv, Yating, Zou, Qihong, Wang, Jinhui
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 26.01.2021
Cold Spring Harbor Laboratory
Edition1.1
Subjects
Online AccessGet full text
ISSN2692-8205
2692-8205
DOI10.1101/2021.01.25.428021

Cover

More Information
Summary:Abstract Morphological brain networks, in particular those at the individual level, have become an important approach for studying the human brain connectome; however, relevant methodology is far from being well-established in their formation, description and reproducibility. Here, we extended our previous study by constructing and characterizing single-subject morphological similarity networks from brain volume to surface space and systematically evaluated their reproducibility with respect to effects of different choices of morphological index, brain parcellation atlas and similarity measure, sample size-varying stability and test-retest reliability. Using the Human Connectome Project dataset, we found that surface-based single-subject morphological similarity networks shared common small-world organization, high parallel efficiency, modular architecture and bilaterally distributed hubs regardless of different analytical strategies. Nevertheless, quantitative values of all interregional similarities, global network measures and nodal centralities were significantly affected by choices of morphological index, brain parcellation atlas and similarity measure. Moreover, the morphological similarity networks varied along with the number of participants and approached stability until the sample size exceeded ∼70. Using an independent test-retest dataset, we found fair to good, even excellent, reliability for most interregional similarities and network measures, which were also modulated by different analytical strategies, in particular choices of morphological index. Specifically, fractal dimension and sulcal depth outperformed gyrification index and cortical thickness, higher-resolution atlases outperformed lower-resolution atlases, and Jensen-Shannon divergence-based similarity outperformed Kullback-Leibler divergence-based similarity. Altogether, our findings propose surface-based single-subject morphological similarity networks as a reliable method to characterize the human brain connectome and provide methodological recommendations and guidance for future research. Competing Interest Statement The authors have declared no competing interest.
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
Competing Interest Statement: The authors have declared no competing interest.
ISSN:2692-8205
2692-8205
DOI:10.1101/2021.01.25.428021